摘要 - 背景:模拟器培训对于教学学生在开始在诊所工作之前与CBP相关的基本技能很重要。当前可用的高层模拟器缺乏解剖特征,可以帮助学生在视觉上了解血液动力学参数与解剖结构之间的联系。因此,我们机构开发了3D打印的硅胶心血管系统。这项研究旨在确定使用这种解剖学灌注模拟器而不是传统的“桶”模拟器是否会更好地改善灌注学生对插管部位,血流和解剖结构的理解。方法:对16名学生进行了测试以建立他们的基线知识。他们被随机分为两组,目睹了在两个模拟器之一(解剖或水桶)中运行的模拟旁路泵,然后重新测试。为了更好地分析数据,我们定义了“真实学习”的特征,其特征是在模拟后评估中纠正的仿真评估的答案不正确。结果:见证了在解剖模拟器上运行的模拟泵的组显示,平均测试评分的增加,更多的真实学习实例以及敏锐的信心间隔的增长更大。结论:尽管样本量较小,但结果表明解剖模拟器是教新灌注学生的宝贵工具。
Alexis Chenouard,Marie Rimbert,Nicolas Joram,CécileBraudeau,Antoine Roquilly等。胸腔手术年鉴,2021,111(5),第1636-1642页。10.1016/j.athoracsur.2020.05.071。hal-04706563
Kinetis K28F MCU 子系列高性能 ARM® Cortex®-M4 MCU,带有 2 MB 闪存、1 MB SRAM、2 个 USB 控制器(高速和全速)、SDRAM 控制器、QuadSPI 接口和带内核电压旁路的电源管理控制器。 K28F 扩展了 Kinetis Micontroller 产品组合,使其具有大容量嵌入式存储器、高级外部存储器接口、性能和外设集成,同时保持了与以前 Kinetis 器件的高水平软件兼容性:• 扩展的存储器资源包括总共 2 MB 的可编程闪存和 1 MB 的嵌入式 SRAM,可用于支持数据记录和带显示屏的丰富人机界面的应用需求• 带内核电压旁路的电源管理控制器允许使用外部 PMIC,从而最大程度地提高系统的电源效率• K28F 利用 SDRAM 控制器和 QuadSPI 接口实现存储器扩展,从而从外部串行 NOR 闪存进行就地执行 (XIP)• USB 高速和无晶振全速控制器均集成了 PHY,以降低 BOM 成本• 集成的智能外设(如低功耗 UART 和定时器)以极低功耗模式运行,以优化系统的电池寿命
Microlock HEPA SA 螺栓锁外壳采用摆动螺栓锁定机制,确保过滤器和外壳垫圈之间完美密封,并降低关键环境中空气旁路的可能性。此密封通过外壳内部的连续平面安装表面实现,该表面与过滤器上的周边垫圈配合。创建此密封只需将摆臂定位在过滤器旁边,然后定位并拧紧弹簧夹以将过滤器固定在外壳的周边安装表面上。
GE(通用电气)Digital Energy™ LP 系列 UPS 是一款真正的在线双转换、智能和重型 UPS,用于集中电源保护。带隔离旁路的持续运行技术可在最恶劣的条件下提供最高的可靠性,防止电源干扰。LP UPS 易于安装和维护。它可以集成到任何办公室或工业环境中。得益于 RPA(冗余并联架构),可以通过并联单元扩展系统功率,或者可以通过添加冗余单元来提高系统可靠性。LP 11 是单相 UPS,LP 31T 型号为 3 相输入和 1 相输出。每个 Digital Energy™ UPS 都经过全面测试,并符合以下规格的公差范围。(数据为平均值,如有更改,恕不另行通知。)除非另有说明,否则信息适用于所有型号。2.1 操作原理
•开发一个更有效的AI驱动系统,用于匹配心脏移植供体和受体。•创建风险模型来指导决策,从而改善周围血管疾病患者的结局。•使用AI开发癌症遗传学知识基础并建立临床决策支持工具。•开发风险工具以更好地分层哪些儿科创伤患者受益于CT扫描。•创建风险模型来预测减肥手术的反应者。•评估神经精神疾病与胸动脉瘤之间的潜在关联。•自动提取和多模式癌数据湖的特征•开发AI算法以预测心血管重症监护病房中的死亡率•将AI应用于单个临床注释,以预测冠状动脉旁路的结果
变速驱动器:• 驱动器的设计基础应为 ABB 系列 ACH-580。可接受的驱动器应为 ABB(ACH-580 系列)、York(AYK 系列)或 Danfoss(HVAC 系列)。如果需要特定型号,信息应按照大学的规定提供。所有内部驱动器应为 NEMA 12 级,外部安装的 VFD 应为应用级。驱动器不得安装在气流内。• 3 马力及以上的电机优先使用变速驱动器。电动启动集成制造商选件旁路的使用仅可用于业主同意的特定目的。使用旁路集成时应集成到 UMD CCMS 中。• 与变速驱动器一起使用的电机应为逆变器工作类型,驱动器端配有轴接地环,电机端安装陶瓷轴承,电机 HP 等于或高于 40 HP。
损伤或中风。其他神经旁路位置也已被描述或可能很快将进入开发阶段,包括皮质脊髓旁路、皮质皮质旁路、自主神经旁路、外周中枢旁路和受试者间旁路。最常见的记录设备包括 EEG、ECoG 和微电极阵列,而刺激设备包括侵入式和非侵入式电极。正在开发几种设备,以提高神经元记录和刺激的时间和空间分辨率以及生物相容性。进入的主要障碍包括神经可塑性和经常需要重新训练的当前解码机制。神经旁路是一类独特的神经调节。持续改进具有高空间和时间分辨率的神经记录和刺激设备,结合不受神经可塑性抑制的解码机制,可以扩大神经旁路的治疗能力。总体而言,神经旁路是一种有希望的治疗方式,可以改善常见神经系统疾病的治疗,包括中风、脊髓损伤、外周神经损伤、脑损伤等。