5.1.3 – 坚固性 ...................................................................................................................................................................................... 17
像您这样的投资者在做出决策并努力实现财务目标时,可能会感受到类似的信息冲击。在 Burish Group,我们可以帮助您解读和抵御这些风向。在许多方面,踢球者背后的强大顺风代表着美国经济,美国经济在 2025 年进入了健康发展阶段。经济增长强劲,就业机会充足,实际工资上涨,通货膨胀率下降,利率正在缓和。展望未来,减税和放松监管的可能性——再加上更仁慈的美联储——意味着有利的投资条件应该会持续下去。所以也许我们的踢球者应该无视旗帜,只依靠背后的强大阵风,直接瞄准中间。三分!不过,很难忽视那些旋风。向左吹的旗帜可能代表提高关税对通货膨胀的影响。向右吹的旗帜可能表明需要在国家债务问题达到危机程度之前解决它,或者大规模驱逐出境对劳动力成本和产出的影响。知道瞄准哪里可能比看起来更棘手,但我们的研究团队相信成功的几率更大。1
摘要NASA Ingenuity直升机的成功承诺,未来对火星的探索将包括与流浪者和着陆器一致的Aerobots。但是,由于其小而基本的设计,Ingenuity缺乏远程耐力和科学有效载荷能力。在一系列优化的火星无人机概念开发中,我们在本文中介绍了基于旋转EVTOL设计配置的初始尺寸,基于对悬停和垂直攀爬的执行参数分析,使用简化的Rotorcraft Momentum理论,用于一组更具挑战性的Martian Aerobot Mission,并符合最大的SpaceCraft Airoshell Limit lim Limit spacececraft Airsherlaft Airoshell Limit limimimep。发现串联转子构型是最有效的配置,而传统的单个主转子配置具有小直径,表现出最差的性能。
研究了Sn-Bi-Cu、Sn-Bi-Ni、Sn-Bi-Zn、Sn-Bi-Sb合金的超塑性变形行为。本研究旨在测定Sn-Bi二元合金的应变速率敏感性指数m。在不同横梁速度下进行25、40、60和80 ℃拉伸试验,测定指数m。结果表明,指数m随Bi浓度和试验温度的增加而增大。在60和80 ℃时,Sn-Bi合金的指数m均超过了3.0,这是超塑性变形行为的阈值。研究发现,Sn-Bi共晶组织对亚共晶Sn-Bi合金的超塑性变形有显著的影响。
在耦合微观聚结模型的输运模型中,研究了√sNN=2.4GeV时20-30%Au+Au碰撞中心性中质子和氘的有向和椭圆流及其标度特性.结果表明,用同位旋和动量相关的核平均场模拟的不可压缩率K0=230MeV的流动及其标度特性与HADES数据有很好的拟合度,而常用的动量无关的核平均场模拟的流动及其标度特性只能部分拟合HADES数据.此外,通过检查√sNN=2时0-10%Au+Au碰撞中心性中质子和氘的快度分布,发现用同位旋和动量相关的核平均场模拟的流动及其标度特性与HADES数据有很好的拟合度. 4 GeV,我们发现,用动量无关的核平均场模拟的氘核快度分布被低估了,而质子的快度分布被高估了。相反,用同位旋和动量相关的核平均场模拟的质子和氘核快度分布与 HADES 数据高度一致。我们的发现意味着,核平均场的动量依赖性是理解核物质性质和成功解释 HADES 数据的一个不可避免的特征。
I. 简介 许多研究人员已经基于多孔弹性构建了脑积水的计算理论。此类模型将有助于更好地理解问题,从而提供更好的治疗方法。此类模型还忽略了分流术的间歇性影响,而分流术是治疗脑积水最常用的方法。我们使用弹性和流体力学来创建人脑和脑室系统的数学模型。我们的模型通过考虑跨导水管的流动并包括边界约束来扩展以前的工作。这将为疾病的边界和改善创建一个定量模型。我们开发并解决了该模型的控制方程和边界条件以及有意义的临床发现。我们的模型通过将导水管流与边界约束结合起来,扩展了早期对脑积水的研究。脑脊液沿着脊髓周围的蛛网膜下腔向下流动,然后进入颅脑蛛网膜下腔,然而,物理定律很难解释这种流动是如何持续的。采用体内刺激的数学方法来研究脉动血液、脑和脑脊液的动态相互作用 1 。本文介绍的模拟是为患有脑脊液生理病理疾病脑积水的个体生成的 2 。研究特发性脑积水化学浓度不对称循环的后脑室通透性 3 。使用基本的几何模型,当前的研究提出了一种全新的脑积水多物理扩散过程方法,并作为更复杂的几何模拟的标准 4 。研究了脑脊液在心血管和蛛网膜下腔的循环以及脑脊液渗入多孔脑实质的问题。开发了复杂大脑几何形状的边界条件 5 。将标准受试者的研究信息与代表颅内动力学的实际计算模型进行了比较。该模型利用特定于受试者的磁共振 (MR) 图像和物理边界条件作为输入,可重现脉动的脑脊液循环并模拟颅内压力和流速 6 。该数值模型用于探索横截面几何形状和脊髓运动如何影响非稳定速度、剪应力和压力梯度场 7 。该系统分为五个子模型:动脉系统血液、静脉系统血液、心室脑脊液、颅内蛛网膜下腔和脊髓出血腔。阻力和顺应性将这些子模型连接起来。构建的模型用于模拟七个健康个体中发现的关键功能特征,例如动脉、静脉和脑脊液流量分布(幅度和相移) 8 。此前,利用时间分辨三维磁共振速度映射研究人体血管系统中健康和异常的血流模式。利用这种方法研究了 40 名健康志愿者 9 的脑室系统中脑脊液流量的时间和空间变化。这些颗粒中的脑脊液和血液之间的屏障很小,使脑脊液能够流入循环并被吸收。与脑脊液的产生相反,消耗是压力-
1.1 复合直升机的示例.......................................................................................................................................................3 1.2 倾转旋翼飞机的示例.......................................................................................................................................................3 1.3 前飞对后飞桨叶速度的影响.......................................................................................................................4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后飞桨叶升力来平衡旋翼力矩的需要,可以缓解后飞桨叶失速,就像单旋翼飞行器一样(左图)[5]。................................................................ ..................................................................................................................................................................................4 1.5 兰利全尺寸风洞中的 PCA-2 转子试验装置 [11]。...9 1.6 采用悬臂转子配置的 Meyer 和 Falabella 风洞试验装置 [12]。......................................................................................................................................................................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾音器 [12]。 12 1.9 1965 年詹金斯在兰利全尺寸风洞中的试验装置 [13]。 14 1.10 高进速比时转子推力和 H 力系数与总距(A0)的关系,显示总距推力反转 [13]。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.13 在增加前进比的情况下,在盘面载荷恒定的情况下测得的有效旋翼升阻比 [16]。 . . . . . . . . . . . . . 21 1.14 升力对总距比和前进比的敏感度变化 [16]。 . . . . . 22 1.15 在 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中监测 UH-60A 空气载荷旋翼 [17]。 . . . . . . . . . . . . . . 24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。 . ...