精确空投是一种技术,其所需能力变得更加精确,因为战斗情况需要更高的精确度。弹道和翼伞型运载工具没有能力在城市战斗情况下持续向特定屋顶投送有效载荷。滑翔自转旋翼机运载平台已被研究作为实现更高空投性能的手段。自转旋翼机具有与翼伞相似的滑翔特性,但具有更好的抗风能力和控制能力。已经构建了基于动量和叶片元素直升机理论的初步模拟。已经开发了一种使用多环闭合策略的经典控制器,该控制器使用新的非线性制导律来遵循由考虑初始条件的算法生成的路径。扩展卡尔曼滤波器用于状态估计。模拟结果显示一致的精度约为 5 英尺,最终位置误差很少超过 10 英尺。
本论文中表达的观点为作者的观点,不反映美国空军、国防部或美国政府的官方政策或立场。本材料被宣布为美国政府的作品,不受美国版权保护。
减去乘客座位,旋翼机可以在地面附近安全飞行的最大重量、高度和温度,最大风速根据 CS 29.143(c) 确定,并且可能包括其他已证实的风速和方位角。操作范围必须在旋翼机飞行手册的限制部分中说明。
v 至 x................................................4/12/06 xiii 至 xxii ..............................................4/12/06 C-9 至 C-87..............................................4/12/06 D-1 至 D-58 .........................................4/12/06 D-67 至 D-70 ....................................4/12/06 D-109 至 D-133 .........................4/12/06 F-33 至 F-46........................................4/12/06 G-43 至 G-49 ....................................4/12/06 MG 1-15 至 MG 1-16 ................................4/12/06 MG 4-9 至 MG 4-13 ................................4/12/06 MG 8-1 至 MG 8-31 ................................4/12/06 MG 12-1 ................................................4/12/06 MG 16-1 至 MG 16-18 ....................4/12/06 MG 17-1 ..............................................4/12/06 MG 18-1 至 MG 18-27 ....................4/12/06 Apdx A-47 至 Apdx A-71................4/12/06 Apdx B-11 至 Apdx B-20 ................4/12/06
4.6.1.1 能力 4-25 4.6.1.2 优势 4-25 4.6.1.3 局限性 4-26 4.6.1.4 系统成熟度 4-26 4.6.1.5 系统集成问题 4-26 4.6.1.6 所需子系统 4-26 4.6.1.7 人为因素 4-26 4.6.2 直升机操作主动侧杆的触觉提示 4-26 4.6.2.1 能力 4-27 4.6.2.2 优势 4-28 4.6.2.3 局限性 4-28 4.6.2.4 系统成熟度 4-28 4.6.2.5 系统集成问题 4-28 4.6.2.6 所需子系统 4-28 4.6.2.7 人为因素 4-28 4.6.3 Dimensional Audio 4-28 4.6.3.1 能力 4-28 4.6.3.2 优势 4-29 4.6.3.3 局限性 4-29 4.6.3.4 系统成熟度 4-29 4.6.3.5 系统集成问题 4-29 4.6.3.6 所需子系统 4-29 4.3.6.7 人为因素 4-29 4.6.4 平视显示器 4-29 4.6.4.1 能力 4-29 4.6.4.2 优势 4-30 4.6.4.3 局限性 4-30 4.6.4.4 系统成熟度 4-30 4.6.4.5 系统集成问题 4-30 4.6.4.6 所需子系统 4-30 4.6.4.7 人为因素 4-31 4.6.5 头盔瞄准具和显示器 (HMSD) 4-31 4.6.5.1 能力 4-31 4.6.5.2 优势 4-31 4.6.5.3 局限性 4-31 4.6.5.4 系统成熟度 4-31 4.6.5.5 系统集成问题 4-31 4.6.5.6 所需子系统 4-31 4.6.5.7 人为因素 4-32 4.6.6 能力和局限性总结 4-32
本文档包含指向包含欧盟法律的页面和/或 EASA 网站页面的链接。您不应点击这些链接,因为这些目标页面不会包含有关您的权利和义务的最新和准确描述。
[1] I. Y. Jung,“飞机维护安全管理分析及改进”,韩国国立交通大学硕士学位论文,韩国忠州,2015 年。 [2] S. H. Park,“基于行星齿轮系的调速器设计研究”,世宗大学硕士学位论文,韩国首尔,2013 年。 [3] P. Ky,年度安全评估,欧洲航空安全局,2016 年 [4] 航空信息门户系统。年度航空事故状况 [Internet]。可访问网址:http://www.airportal.go.kr/life/accident/stat/status.jsp [5] Gh. Buzdugan、E. Mihailescu 和 M. Rades,振动测量,2010 年版,荷兰,Springer,2010 年 [6] AMCOM,ADS-79-HDBK rev. D、航空设计标准:美国陆军飞机系统基于条件的维护系统手册,美国陆军航空与导弹研究、发展与工程中心,2013 年 [7] 韩国直升机项目组,HGS 质量保证要求,QARA81537302,DAPA,2013 年。
5.偏差。由于旋翼机设计与常规配置不同,可能有必要偏离本 AC 中概述的方法和程序。这些程序只是符合第 27 部分的一种可接受方式。申请人提出的任何替代方法都将得到适当考虑。鼓励申请人利用其技术智慧和资源开发更有效、更便宜的方法来实现第 27 部分的目标。监管人员和指定人员应通过工程判断来应对此类努力,以促进任何此类努力,只要第 27 部分和《联邦航空法》的文字和精神得到尊重。建议提前与旋翼机标准人员、ASW-110 或适当的适航当局协调不寻常或独特的项目,以确保及时和统一的考虑。
本文将回顾先进旋翼机构型(包括复合直升机构型和倾转旋翼飞行器)数学建模的发展和应用。数学模型是飞行控制系统设计的基础,也是评估直升机飞行和操纵品质的重要工具。由于直升机是一个多体系统,其数学建模应考虑运动、惯性、结构和气动之间的耦合作用以及非定常和非线性特性,给出各部分的物理原理和数学表达。因此,直升机的数学建模是一个分析和综合不同假设和子系统模型的过程。此外,先进的直升机构型在气动干扰、桨叶运动特性和机动评估方面对直升机数学建模提出了更高的要求。本文将阐述直升机建模的关键问题,特别是先进旋翼机构型的建模。本文重点研究旋翼气动建模以及旋翼、机身和其他部件之间的气动相互作用。综合建模方法和机动性研究也是本文的重点。本文还对未来直升机飞行动力学建模的研究提出了建议。