在本研究中,计算流体动力学用于对在地面效应下运行的转子进行安全性分析。首先,本文重点关注对微转子在不同地面高度运行产生的流出物的评估和预测。将时间平均流出速度与实验结果进行比较。然后,使用 PAXman 模型和粒子跟踪方法对模拟流场进行安全性研究。研究了飞机重量,评估了比例因子以确定直升机重量如何影响流出力和粒子路径。结果表明,较重的直升机产生的尾流会对地面人员产生更大的力,并将粒子推离转子更远。此外,地面和转子之间的距离会影响粒子路径,为机组人员和地面人员产生不同的危险情况。
2.1 旋翼机气动声学 ................................................................................................................ 19 2.1.1 飞机模式 ................................................................................................................ 20 2.1.2 直升机模式 ................................................................................................................ 22 2.1.3 过渡模式 ................................................................................................................ 25 2.2 旋翼机声学数据处理技术 ............................................................................................. 26 2.2.1 信号滤波 ................................................................................................................ 27 2.2.2 采样率 ................................................................................................................ 28 2.2.3 信号平均 ................................................................................................................ 28 2.2.4 声学图 ................................................................................................................ 29 2.2.5 距离校正 ................................................................................................................ 30 2.2.6 旋翼飞行器的声学指标 ................................................................................................ 32
非常适合涡轮市场,包括固定翼和旋翼的应用,TB44快速启动飞机的发动机,并具有优质的能量密度-Nanophophate®Lithium-ion Cells可提供每公斤能量的3倍,导致电池比铅酸或镍 - 镀镍 - 替代品轻40%。
摘要:为研究上下旋翼干扰效应以及进给比、轴倾斜角和升力偏移对缩比同轴刚性旋翼系统气动性能的影响,对缩比同轴刚性旋翼系统在悬停和稳定前飞过程中的气动性能进行了实验研究。旋翼系统采用直径2 m、四叶片上下无铰链旋翼,安装在同轴旋翼试验台上。实验在中国空气动力研究与发展中心(CARDC)的φ3.2 m风洞中进行。旋翼系统在0°~13°的总距范围内进行了悬停测试,并在进给比高达0.6的情况下进行了前飞测试,重点关注了轴倾斜角和升力偏移扫掠。为了使共轴旋翼的运行方式与实际飞行方式相似,悬停飞行时将扭矩差调整为零,前飞时保持恒定升力系数。在同轴旋翼中以相同的螺距角设置进行了孤立单旋翼配置试验。悬停试验结果表明,下旋翼的品质因数 (FM) 值低于上旋翼,且均低于孤立单旋翼。此外,在相同的叶片载荷系数 (C T / σ) 下,同轴旋翼配置可以获得更好的悬停效率。前飞时,有效升阻比 (L/De) 为
1.1 复合直升机的示例.......................................................................................................................................................3 1.2 倾转旋翼飞机的示例.......................................................................................................................................................3 1.3 前飞对后飞桨叶速度的影响.......................................................................................................................4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后飞桨叶升力来平衡旋翼力矩的需要,可以缓解后飞桨叶失速,就像单旋翼飞行器一样(左图)[5]。................................................................ ..................................................................................................................................................................................4 1.5 兰利全尺寸风洞中的 PCA-2 转子试验装置 [11]。...9 1.6 采用悬臂转子配置的 Meyer 和 Falabella 风洞试验装置 [12]。......................................................................................................................................................................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾音器 [12]。 12 1.9 1965 年詹金斯在兰利全尺寸风洞中的试验装置 [13]。 14 1.10 高进速比时转子推力和 H 力系数与总距(A0)的关系,显示总距推力反转 [13]。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.13 在增加前进比的情况下,在盘面载荷恒定的情况下测得的有效旋翼升阻比 [16]。 . . . . . . . . . . . . . 21 1.14 升力对总距比和前进比的敏感度变化 [16]。 . . . . . 22 1.15 在 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中监测 UH-60A 空气载荷旋翼 [17]。 . . . . . . . . . . . . . . 24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。 . ...
超速离合器将动力从发动机传输到主驱动轴。离合器没有外部控制,在自动旋转和发动机关闭期间自动分离。主驱动轴连接到主旋翼变速箱输入轴。发动机油冷却器鼓风机由主驱动轴皮带驱动,并从进气整流罩中抽取冷却空气,以将环境空气供应给发动机和变速箱油冷却器以及发动机舱。主旋翼变速箱安装在乘客/货舱上方的机身结构上。变速箱由其自己的风冷油润滑系统润滑。主旋翼静态桅杆不旋转,并刚性安装在机身桅杆支撑结构上。该静态桅杆用于分离旋翼的升力和扭矩负载。
摘要:本文介绍了住宅用户的综合式式储能系统(FESS)的能源管理和控制系统设计。所提出的fess能够在8 kW处绘制/传递8 kWh,并依靠大型表面安装的永久性磁铁同步ma-chine,其内旋翼的内转子会积分碳纤维,从而导致紧凑型和有效的候补饮食。拟议的能源管理系统基于四种不同的操作模式,这些模式是定义的,可以根据FESS速度和/或用户的喜好选择,而FESS Control System专用于机器和网格端转换器的Power/Current Tracking。实时模拟验证了拟议的解决方案的有效性以及所提出的FESS的整体能量性能,这些模拟将不同的操作条件和/或现实的场景介绍。
摘要。鱿鱼(超导量子干扰设备)是能够检测和测量具有前所未有灵敏度的各种物理参数的宏观量子设备。基于纳米布里奇弱环节的鱿鱼显示出对量子信息和量子传感应用(例如单个自旋检测)的越来越多的希望。焦点束蚀刻的纳米三旋翼具有可以增强纳米Quid设备性能的性能,但通常在其非迟发性工作温度范围内受到限制。在这里,我们将使用GA,XE或NE ION离子束源制成的单个弱环或纳米Quid中的纤维膜纳米三旋翼的测量值。根据温度,偏置电流,磁场和微波功率的函数,根据一系列超导性模型进行测量和建模,以改善对相关纳米架参数的理解。我们进一步提出了扩展设备的非滞后工作温度范围的技术。
在欧洲旋翼机空气动力学和声学 (HELISHAPE) 大型合作研究计划的框架内,在 DNW 的开放测试部分进行了参数模型旋翼测试,使用 DLR 的 MWM 测试台和配备先进设计的叶片和两个可更换叶尖的全铰接式 ECF 旋翼的高度仪器化模型。一组叶尖 (7A) 为矩形,另一组 (7ADI) 为后掠抛物线/上反角形状。这项实验研究的目的是评估降噪技术(概念上通过改变旋翼速度、专用叶尖形状和先进的翼型,以及操作上通过确定低噪音 - BVI 最小化下降程序)并验证合作伙伴的空气动力学和声学代码。同时测量了叶片表面声学和气动压力数据以及叶片动力学和性能数据。此外,通过 LLS 流动可视化获得了有关尖端涡流几何形状和叶片涡流错开距离的宝贵信息。简要描述了实验设备、测试程序和测试矩阵。介绍了主要结果,并讨论了两个转子最重要的参数变化趋势。
1.1 复合直升机示例。........................3 1.2 倾转旋翼飞机示例。。。。。。。。。。。。。。。。。。。。。。。。。3 1.3 前飞对后退叶片速度的影响。.........4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后退叶片升力来平衡旋翼力矩的需要,可以缓解后退叶片失速,就像在单旋翼飞行器中一样(左图)[5]。..。。。。。。。。。。。。。。。。。。。。。。。。..4 1.5 兰利全尺寸风洞中的 PCA-2 转子测试装置 [11]。.9 1.6 带有悬臂转子配置的 Meyer 和 Falabella 风洞测试装置 [12]。.............................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾取器 [12]。.12 1.9 1965 年詹金斯在兰利全尺寸风洞中的测试装置 [13]。.14 1.10 高前进比时转子推力和 H 力系数与总距 (A0) 的关系,显示总距推力反转 [13]。..........15 1.11 反向速度转子风洞模型中使用的“可逆”翼型截面轮廓 [16]。.........................18 1.12 为反向速度转子风洞模型开发的每转两个斜盘 [16]。.。。。。。。。。。。。。。。。。。。。。。。。。...19 1.13 在恒定盘面载荷下测量的有效转子升阻比,以提高前进比 [16]。.......................21 1.14 升力对总距比与前进比的敏感度变化 [16]。....22 1.15 位于 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中的仪表化 UH-60A 空气负载旋翼 [17]。...。。。。。。。。。。。。。。。。。。。。。。24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。...................................26 1.18 不同推进比下的升阻比与升力零和正 4 度轴,40% NR [18]。。。。。。。。。。。。。。。。。。。。。。。27