固定翼和旋翼飞机制造商将大型、相互依赖的设备组视为系统:航空电子设备、厨房、客舱照明、暖通空调、IFE、导航等。但连接这些设备组的电缆和线束一直被视为单项选择,没有充分考虑最佳实践设计和性能标准。在主要飞机制造商的支持下,FAA 已采取措施改变互连技术的指定和管理方式。这项工作的关键要素是开始将线路和相关互连组件视为一个重要的飞机系统。电气线路互连系统(或 EWIS,FAA 的缩写)被定义为:安装在飞机任何区域的任何电线、接线设备或组合,包括终端设备,用于在两个或多个预期终端点之间传输电能。EWIS 实际上是在 1996 年构思出来的,当时环球航空 800 航班在从纽约起飞 12 分钟后坠入大西洋。在为期四年的调查中,美国国家运输安全委员会始终未能确定 747 中央机翼油箱的起火原因,但确实发现了附近存在一些潜在的不安全状况,包括破裂
包括自主控制(无人机)和通过无线电发射器控制的遥控飞行器 (RPV)。无人机通常用于派遣人类驾驶飞机风险很高或使用载人飞机不切实际的情况下。无人机的早期用途之一是“空中鱼雷”,设计和制造于第一次世界大战期间。多旋翼飞行器的历史可以追溯到 20 世纪 20 年代末,当时被称为四旋翼旋翼机。这些是原始的无人机,依靠机械陀螺仪保持直线水平飞行,并一直飞行直到燃料耗尽。后来,由于控制部分的复杂性和飞行员的工作量,它被单旋翼飞机所取代,也就是今天所说的直升机。但是,多旋翼无人机因其多种用途和结构完整性以及完美的稳定性而再次受到我们的欢迎。更先进的无人机可以控制飞行。随后,集成电路的发明催生了可通过电子自动驾驶仪控制的无人机。现代无人机既有自动驾驶仪,也有手动控制器。这使它们能够在自己的控制下进行长距离、安全的飞行,并在任务的复杂阶段在人类飞行员的指挥下飞行。多旋翼无人机是一种比空气重的飞机,能够垂直起降 (VTOL),由带螺旋桨的旋翼推动,这些旋翼位于与地面平行的同一平面上。
简介 螺旋锥齿轮是高精度、高成本的部件,用于几乎所有现代旋翼飞机的主要动力传动系统。这些齿轮的生产是一个复杂的过程,首先要用高质量的航空钢(如 AMS 6265)锻造形状。将形状粗加工成精确的 3-D 几何形状,然后进行热处理以达到所需的强度特性,从而提供所需的表面耐用性和抗弯曲疲劳性组合。通过精磨和喷丸处理实现最终的几何形状和表面光洁度。完整的加工周期可能需要 6 到 9 个月,因此需要很长时间才能采购新的生产部件。新飞机的生产——加上对从伊拉克和阿富汗服役回来的飞机的大修——导致了对新生产的螺旋锥齿轮需求非常高的局面。原始设备制造商和政府都密切监控可用的齿轮资产,以确保有足够的供应用于新生产和大修。这种情况给获取螺旋锥齿轮资产以开展研究和开发项目带来了巨大挑战。先前的一项研究(参考文献 1)表明,现有的超精加工方法(化学辅助振动工艺)可以修复表面损伤较小的直齿轮和斜齿轮的有效齿面。可以实现显著的成本节约
Aerospace Holdings Corp. 和 HEICO Flight Support Corp. 及其子公司分别占我们 2020、2019 和 2018 财年净销售额的 52%、60% 和 62%。FSG 使用专有技术设计和制造喷气发动机和飞机部件替换零件,以低于 OEM 制造的价格出售。这些零件已获得 FAA 批准,功能与 OEM 销售的零件相同。此外,FSG 还为国内外商业航空公司和飞机维修公司以及军用和公务飞机运营商维修、大修和分销喷气发动机和飞机部件、航空电子设备和仪器。FSG 还作为航空航天和工业原始设备制造商以及美国政府的分包商制造和销售特种零件。此外,FSG 是军用飞机零部件和支持服务的领先供应商、分销商和集成商,主要为与美国结盟的外国军事组织提供服务,也是商用航空、国防和太空应用的先进细分部件和复杂复合组件的领先制造商。此外,FSG 还为航空航天、国防、商业和工业应用设计、制造隔热毯和零部件以及可拆卸/可重复使用的绝缘系统;制造用于固定翼和旋翼飞机雷击防护的膨胀箔网;分销航空电气互连产品和机电零件;并检修工业泵、电机和其他液压装置,重点是支持美国海军的遗留系统。
第 1 部分 执行摘要 简介:根据对 2008 年 OIG 航空安全审计的回应中同意的建议 3,美国森林服务局特殊任务适航保证指南的制定目的是根据每项特殊任务建立先决条件标准、评估和监控,以验证飞机的用途并确保飞机具有适当的维护和检查程序基于损伤容限分析确保飞机在用于该任务时适航。适航标准适航性 1 - 特定飞机根据批准的用途 [特殊任务] 和限制安全实现、维持和终止飞行的特性。1. 为满足要求,美国森林服务局将寻求采购和维持 FAA 认证的固定翼和旋翼飞机,即使此类飞机的预期用途与原始设计不一致或不存在等效的民用操作。2. 美国森林服务局将寻求确保其飞机在切实可行的范围内符合联邦航空法规规定的民用适航标准。商用飞机必须遵守 14 CFR 要求,公法指定 FAA 为美国国家空域系统的监管者和 14 CFR 要求的执行者。但是,美国森林服务局拥有、运营和承包的飞机执行“公共飞机作业”,美国森林服务局是其在执行这些特殊任务时适航保证的责任人。重申,飞机在为美国森林服务局执行特殊任务时:
南卡罗来纳大学参与美国军方直升机和旋翼飞机研究已有 18 年多。这项工作的大部分重点是通过利用基于条件的维护 (CBM)(通常称为预测性维护 (PM))来优化飞机的正常运行时间和飞行准备情况。这种类型的维护不同于其他传统方式(反应性和预防性),因为它具有高可靠性和低成本。任何应用中 PM 的基础都是数据收集和存储。它首先将自然语言处理 (NLP) 等工具应用于历史维护记录,以确定飞机上最关键的部件。然后使用先前收集的传感器数据的数据挖掘来建立监控关键部件的最可靠类型的状态指示器 (CI)。随着收集到更多数据,这些来自 CI 的阈值可以随时间进行修改。一旦制定了数据收集方案,就可以使用预测来确定组件的剩余使用寿命。使用此流程以及通过维护指导小组 (MSG-3) 计划优化的维护计划,有助于消除飞机上不必要的维护操作,并减少飞机运行所需的组件库存。制定此维护方案后,可以利用物联网 (IoT) 让整个流程在单一环境中运行。这进一步开发了解决方案,并允许操作比单独执行更快地执行。除非人员接受适当的教育和培训,否则这些实践的预期收益和未来发展将永远不会实现。在航空环境中培养预测性维护实践文化对于确保此解决方案的成功至关重要。
航空安全航空安全是普韦布洛调度区的首要任务。我们不会故意纵容和/或容忍在普韦布洛区域飞行时任何不安全的程序、做法或设备。安全的空中飞行需要团队合作以及参与飞行的所有人员的共同努力。我们尊重您作为飞行员和模块负责人的权威,因为您负有对乘客和飞行安全的最终责任。如果您在单位工作时发现任何不安全的操作或有任何疑虑,请立即通知单位航空官、调度办公室或当地 FMO。我们将尽一切努力立即纠正这种情况。危险的飞行条件在普韦布洛调度区飞行是危险的。该区域的海拔从 2,000 英尺到最高峰的 14,000 英尺不等。该地区大部分地势陡峭,峡谷和排水沟纵横交错。风、夏季温度和高地势可能导致严重的湍流和高密度高度,使固定翼和旋翼飞机的飞行变得危险。科罗拉多州西南部是高海拔地区的土地;这些地区的火灾可能导致空中作业在海拔 10,000 英尺以上持续很长时间。美国林业局合同要求满足 14 CFR 第 135.89 部分(氧气要求)。飞行员和管理人员通常是最先意识到不安全飞行条件的人。请毫不犹豫地建议或推荐暂停空中作业,直到条件改善。让其他飞机和调度办公室了解您工作区域的情况。您的建议和行动可能是安全的空中作业和发生事故/事故之间的区别。
简介。泰坦大气层与其表面之间的联系是独一无二的:它处于各种表面 - 大气过程的起源 - 液态甲烷流,波浪,降雨[1],沙丘运动,盐酸[2],尘埃[3]和雨暴风雨[4] - 在表面改变和大气动力学中都起着重要作用。有趣的是,泰坦的大气足以传播这些现象产生的声波。因此,可以通过记录其声学特征来定量和远程研究它们。的确,在板上毅力上具有超级骑士麦克风[5]的火星上已经证明了声学研究的巨大潜力[5],其中几个结果记录了近地面现象,例如湍流[6,7],风[8],尘埃[9]。但在泰坦上,由于声音传播条件的增强,这种潜力甚至更大:冷(〜90 K)和厚(〜1.5 bar)的表面大气(95%n 2,〜5%CH 4 [10])可以在长距离上维持声波,并吸收相对较低(见表。1)与火星或地球相比[11]。这种有利的环境激发了声学特性仪器赛车仪(API-V)在船上的船上载体下降模块,该模块成功地估计了下降期间和通过测量声速降落后的相对甲烷分数[12]。在2030年代中期,蜻蜓任务将探索赤道撞击火山口附近的泰坦,并带有可重新定位的旋翼飞机登陆器[13]。关键的地球物理和气象测量将由Dragmet套件(包括三个麦克风)组成的Dragmet Package提供[14]。为准备泰坦的声学探索,本研究旨在建模泰坦大气条件中的声音传播,以便能够估计水平
德国航空航天中心智能结构技术概述 作者:Hans Peter Monner 和 Peter Wierach,德国航空航天中心 (DLR),复合结构和自适应系统研究所 摘要 德国航空航天中心复合结构和自适应系统研究所于 1993 年成立了 Adaptronics 部门。它是德国最大的研究自适应结构系统的科学家团队。主要目标是 − 主动噪声控制, − 主动振动控制, − 主动形状控制。该部门致力于国家项目,如先进飞机结构(DLR 项目)、LEITPROJEKT ADAPTRONIK(BMBF 项目)、自适应并联机器人(DFG 项目)和国际项目,如 FRIENDCOPTER(EU IP)、INMAR(EU IP)、ARTIMA(EU STREP)、电活性聚合物(ESA)。这涉及智能结构的许多方面研究,包括材料特性、执行器和传感器的开发和设计、智能元件的结构集成、先进控制概念的开发以及自适应系统的模拟和建模。本文概述了该部门在该领域的一些活动。1.简介 智能结构涉及五个关键要素:结构材料、分布式执行器和传感器、控制策略和电源调节电子设备。借助这些组件,智能结构能够响应不断变化的环境和操作条件(例如振动和形状变化)。微处理器分析传感器的响应,并使用集成控制算法命令执行器施加局部应变/位移/阻尼,以改变弹性机械系统响应。执行器和传感器通过表面粘合或嵌入高度集成到结构中,而不会导致系统质量或结构刚度发生任何重大变化。智能结构技术是一个高度跨学科的领域,相关方法和技术仍处于早期发展阶段。在经历了大约在 90 年代初的“炒作”阶段之后,人们对智能结构技术的潜力和局限性有了相当清晰的认识。这也是为什么现在智能结构技术的众多应用不断发展以主动控制振动、噪音和变形的主要原因。2.主要活动应用范围从空间系统到固定翼和旋翼飞机、汽车、光学系统、机床、医疗系统和基础设施。
课程目标:这些课程是动手的STEM课程(科学,技术,工程和数学),旨在参与和激励年轻人参与航空航天研究。建议,预期的和最大的学生满足。航空技术1 - 模型火箭(课程编号8600580-1学分)先决条件 - 无。对所有等级开放:模型火箭教授学生的基本实用空气动力学和物理学。小组项目使用简单的模型火箭套件来教授建筑技术,并开发安全的发射和飞行实践。随后对火箭进行修改以满足更改的任务参数。建立了基础后,鼓励学生从事更多参与和苛刻的项目,包括设计/飞行自己的火箭。航空航天技术2 - 飞行模型飞机(课程编号8600680 - 1个学分)先决条件 - 强烈建议使用Aerotech 1。对所有等级开放:遥控固定翼型飞机用于探索复杂的空气动力学。学生团体从计划中建立和飞行模型。在第二学期,他们被鼓励设计和制造自己的飞机。飞行运营是按照公司/航空公司飞行部门建模的。多旋翼飞机(“无人机”)也是飞行的,桌面“飞行模拟器”允许学生比较/对比模型与全尺度通用航空的飞行。(注意:讲师可以帮助想要努力达到FAA无人机许可证的学生。)学生将申请并获得其学生飞行员许可证。Aerospace TechnonLogies 3 - 试点地面学校(课程编号8601780 - 1个学时)先决条件 - Aerotech 2(强烈建议使用1&2)。向大三学生/老年人开放:获得FAA私人飞行员许可证需要书面考试和合并的口腔/实践考试。这项严格的课程为学生提供了通过口试和FAA私人试验知识考试所需的知识(“书面”)。深入的讲座补充了实践测试问题。学生将参加FAA私人试验知识考试作为课程结束测试。(注意:有机会以与本课程并联接受额外费用进行飞行培训。)航空技术1-3摘要