基于冷原子干涉测量法 (CAI) 的惯性传感器的预期性能有望为太空应用带来巨大的潜在收益,该传感器通过用激光操纵自由下落的独立原子来测量它们的加速度。在此背景下,CNES 及其合作伙伴启动了一项名为 CARIOQA 的 0 阶段研究,旨在开发量子探路者任务,解锁原子干涉测量法在太空中的关键特性,并为未来利用该技术的雄心勃勃的太空任务铺平道路。作为在太空实施量子传感器的基石,CARIOQA 0 阶段旨在定义量子探路者任务的场景和相关的性能目标。为了实现这些目标,有效载荷架构已被设计为在基于 BEC 的原子干涉仪上实现长询问时间和主动旋转补偿。已经对包括所有子系统在内的卫星架构进行了研究。已经研究了几种推进和姿态控制技术解决方案,以保证最佳运行条件(限制微振动、最大化测量时间)。对卫星平台进行了初步设计。
冷原子干涉测量法的最新进展为量子惯性传感器的太空应用铺平了道路,随着太空中可进行的更长询问时间,量子惯性传感器的稳定性预计会大幅提高。本研究开发了一种马赫-曾德尔型冷原子加速度计的在轨模型。在不同的定位和旋转补偿方法假设下进行了性能测试,并评估了各种误差源对仪器稳定性的影响。本文讨论了空间原子干涉测量法的当前和未来进展,并从三种不同情景下研究了它们对卫星重力任务中量子传感器性能的影响:最先进情景(预计 5 年内准备好发射)、近期(预计在未来 10 到 15 年内发射)和远期情景(预计在未来 20 到 25 年内发射)。我们的结果表明,通过将静电加速度计放置在卫星的质心处,将量子加速度计放置在卫星的横向轨道轴上,可以实现最高灵敏度。我们表明,使用目前最先进的技术可以实现接近 5 10 10 m/s 2 / ffiffiffiffiffiffiffi Hz p 的灵敏度水平。我们还估计,在不久的将来和遥远的将来,太空中的原子干涉测量法预计将分别达到 1 10 11 m/s 2 / ffiffiffiffiffiffiffi Hz p 和 1 10 12 m/s 2 / ffiffiffiffiffiffi Hz p 的灵敏度水平。考虑到未来的量子加速度计的技术能力,提出了原子干涉测量法改进路线图,以最大限度地提高其性能。最后,讨论了在未来太空任务中使用超灵敏原子干涉测量法的可能性和挑战。2024 COSPAR。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。