在安装张紧器期间,平衡系统会抵消拉拔器套筒的重量。这样,拉拔器套筒便可轻松拧入或拧出螺柱,而不会损坏螺柱螺纹。与升降装置或旋转装置相连的气动提升机可同时支撑平衡系统和张紧器。系统泵送装置安装在一个机柜中,机柜内包含三个气动液压泵、一个储液罐、一个空气调节器和控制阀。机柜内还包含控制面板,控制面板由两个操作空气阀、一个数字压力读数器和张紧器行程指示灯组成。TENSOR™ 螺柱张紧器是 Westinghouse 提供的全套加油增强装置的一部分,包括:• WETLIFT 2000™ 系统 • 刚性杆系统 • 主蒸汽管线塞 • 头部升降装置和/或旋转装置 • 重载索具 • 停运改进研究
AMCI 编码器提高消防车安全性 客户 Amity Fire & Safety 成立于 1973 年,为消防和设备行业生产转环(图 1)、伸缩水道、焊接件、机加工零件和销钉,以满足极其苛刻的应用要求。他们的国际客户群包括 KME(Kovatch 移动设备)、Pierce Manufacturing 和 Rosenbauer 等行业巨头。Amity 的客户制造我们在世界各地当地消防部门看到的消防车。KME 与 Amity 密切合作,设计和制造结构安全且耐用的消防车。KME 定制生产消防服务中最广泛的高空作业车系列,并在其卡车中采用 IQAN E-Control™(运动控制系统)以确保高水平的安全性。该公司在美国和加拿大的 5 个地点拥有 700 名员工。接近开关留有误差空间 梯子底座旋转装置允许云梯旋转,同时充当水和连续液压和电路的通道(图 3)。需要监控消防车上云梯的位置,以降低受伤和设备损坏的风险。Amity 通过在旋转装置上使用限位开关和标志开发了一种联锁装置,以监控梯子的位置并禁止梯子旋转超过 0-180 度。这种方法使他们能够检测梯子是否在一定旋转度数内或之外(通过使用物理标志)。但是,
模拟细胞微环境对于类器官和器官芯片研究非常重要。当前的课题之一是将类似血管的结构引入培养系统以改善细胞和组织功能,这值得在设计和系统考虑方面付出特别的努力。基于标准的设备配置,我们制作了一个类似血管的组件,可以轻松集成以进行细胞共培养。该组件由位于开放通道顶部的嵌入单层明胶纳米纤维组成。然后可以用带有模制腔、通道和标准 Luer 连接器的上部塑料板将其封闭。首先将人脐静脉内皮细胞 (HUVEC) 引入类似血管的通道中,并借助旋转装置进行三维培养。然后,施加流动进行细胞骨架重塑,得到致密且排列整齐的 HUVEC 层。随后,将人类胶质母细胞瘤细胞(U87)引入纤维层的上部,并施加流动以进行上部细胞层培养。我们的结果表明,在单层明胶纳米纤维的两侧均形成了 HUVEC 和 U87 细胞层,从而为各种共培养试验提供了可靠的支持。
除静态纳米结构外,DNA纳米技术还能构建动态和自主开关。[18] 这些动态开关的操作可分为两大类:第一,通过分子相互作用操作;第二,通过外部刺激操作。用于控制纳米尺度运动的主要分子相互作用是DNA杂交(主要是立足点介导的链置换)和碱基堆积。由分子相互作用控制的此类运动的例子包括可重构等离子体装置、[19] 铰链、[20,21] 镊子、[18,22] 旋转装置、[23–26] 助行器、[27] 药物载体 [28,29] 和对分子或纳米颗粒进行分选的机器人。[30,31] 作为驱动机制的其他分子相互作用包括靶分子结合 [32,33] 和适体 [28,29] 以及核小体相互作用。 [34] 通过任何分子相互作用进行的操作(包括上述所有机制)具有可控分子识别和特异性的优点。 然而,操作速度受到分子扩散和相互作用动力学的限制,因此通常非常慢。 值得注意的是,已经开发出多种方法来提高动态 DNA 装置的响应速度。 另一方面,外部刺激如光、[35,36] 温度、[37] 离子、[11,23] pH、[38–40] 和电场 [21,41] 通常能够使操作速度提高很多个数量级。[41] 例如,Karna 等人利用相邻纳米结构域之间可逆的、pH 依赖性的 i-基序形成来促进卷曲 DNA 纳米弹簧的驱动,进而通过整合素偶联影响培养细胞的运动性。 [40] 然而,我们在此称之为外部刺激的任何一种,都存在着整体作用的局限性,而且缺乏分子识别所能提供的特异性。
News Release Successful commissioning Oerlikon Barmag WINGS FDY Technology for a sustainable polyester yarn production at Garden Silk Mills in India Remscheid (Germany) / Surat (India), February 12, 2024 – With the successful commissioning of the new polyester yarn production facility at Garden Silk Mills in Surat, India, Oerlikon Barmag once again proves that the company of the Swiss Oerlikon Industrial Group is正确的是世界领先的人造纤维植物供应商之一。聚酯纺纱厂的转换和新建筑现在总共拥有216个机翼FDY旋转装置,并伴随着广泛的工程工作,该工程与来自德国的专家密切合作进行,最重要的是来自印度。“我们特别高兴的是为另一个成功的客户配备了我们的机翼FDY技术的花园丝绸厂,” Oerlikon Polymer Processing Solutions首席执行官Georg Stausberg解释说。“我们有信心,新的,最先进的旋转厂将能够以经济上有吸引力的方式生产出最高需求的聚酯纱线,以便可以将它们提供给印度市场以及全球市场。我们祝贺花园丝绸厂的成功调试,并祝愿他们一切顺利。Garden Silk Mills Private Limited(GSMPL)的FDY纱扩展项目标志着Chatterjee Group(TCG)在其有远见的主席Purnendu Chatterjee博士的领导下,在纺织领域的快速发展。Oerlikon Barmag Wings Fdy的聚酯纱生产是什么?这些机器在日夜,年,一年中使用。及其在乔尔瓦(Jolwa)的最先进的制造工厂,生产高质量的聚酯芯片,POY,FDY和其他专业纱线,以及具有现代纱丽和着装材料的标志性花园Vareli品牌,Chatterjee Group(Chatterjee Group)的投资是80亿美元的全球投资,真正创造了明天的花园。“我们在MCPI和GSMPL致力于实现TCG董事长Purnendu Chatterjee博士的强烈纺织愿景。”产生纱线的原理始终是相同的:旋转泵在极高的压力下通过微型喷嘴按下塑料熔体,将产生的细丝捆成螺纹,延伸到godets上,并用绕线头缠绕。为了可靠地掌握这一原则,需要高精度和极其稳定的技术。以后无法纠正旋转过程中的丝毫误差。纺织品和技术纱的精确过程Oerlikon Barmag Systems几乎所有过程都用于生产纺织品和技术纱,并旋转共同聚合物聚酯聚合物聚酯聚合物,聚酰胺6和6.6或6.6或聚丙烯。花园丝绸厂专注于所谓的完全绘制的纱线(FDY)。它们被处理成纺织表面,而无需进一步完成。在需要光滑或滑行的任何地方都使用完全绘制的纱线。FDY生产的可持续解决方案Oerlikon Barmag是该领域的技术领导者。机翼概念突破了常规FDY旋转系统的极限。高纱线质量是必须的。机翼代表优化的生产过程,低废率和能源消耗降低了30%左右。该开创性技术可用于聚酯和聚酰胺的FDY过程中。