● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
本文基于人工智能驱动的分析模型,为无人机的多学科概念设计框架提供了一个多学科的概念设计框架。这种方法利用了驱动的分析模型,其中包括空气动力学,结构质量和雷达横截面预测,以将定量数据带到初始设计阶段,从而从各种优化的概念设计中选择了最合适的配置。由于设计优化周期,为以后的设计活动提供了更准确的翼,尾部和机身等关键组件的初始尺寸。同时,生成的结构可以通过设计迭代中的反馈循环实现更合适的设计点选择。因此,除了降低设计成本外,这种方法在整个设计过程中还具有很大的时间优势。
编辑委员会博士Mustafa Necmiİlhan博士 - 加兹大学 - Özlemçakir博士 - DokuzEylül大学协会。MehmetMerveÖzaydın-AnkaraHacıBayramVeli University Assoc。
收集了包括无人机和干扰因素的数据收集测试数据。无人机数据故意多样化,以各种距离和背景为特色。无人机在遥远的地方测试了模型检测无人机的准确性,该数据的细节受到限制,而在不同背景下的无人机测试了模型对噪声的弹性。根据类似于无人机或与无人机一起发现的对象,故意选择了干扰物数据。由于在选择和标记训练数据时犯了错误,该模型测试了模型被模型中存在的类似特征和偏见误导或愚弄的倾向。在步骤1中,总共收集了12206张图像,其中包括7755张图像和分散图像,其余4451张图像。
摘要 - 在过去的十年中,使用自动无人机系统进行测量,搜救或最后一英里的交付呈指数增长。随着这些应用的兴起,需要在复杂和不确定的环境中运行无人机的高度稳健,关键算法。此外,快速快速使无人机能够覆盖更多的地面,提高生产率并进一步增强其用例。一个用于开发高速导航中使用的算法的代理是自动无人机赛车的任务,研究人员将无人机计划无人机通过一系列大门,并尽快避免使用板载传感器和有限的计算能力。速度和加速度分别超过80 kph和4 g,在整个感知,计划,控制和国家估计中提出了重大挑战。为了达到最高性能,系统需要实时算法,这些算法对运动模糊,高动态范围,模型不确定性,空气动力学干扰以及通常无法预测的对手。该调查涵盖了自主无人机在基于模型和基于学习的方法中竞争的进展。我们提供了多年来的领域,其发展的概述,并以将来面临的最大挑战和开放性问题得出结论。
无人驾驶汽车(UAV)技术的成熟和可伸缩性为彻底彻底迅速交付提供了变化的机会。本研究探讨了将无人机与公共交通工具(PTV)整合在一起,以建立一种新颖的交付范式,从而增强了公共交通运营商的收入,并提高了运输系统的效率,而不会损害乘客的便利或运营效率。采用六边形规划技术,本研究确定并量化了PTV的可用时空资源以进行无人机集成。这涉及将迅速交付订单的时空动态与PTV乘客的临时动态保持一致,该动态基于北京海德地区的现场数据。利用这些输出,我们定量分析将无人机与PTV集成在增加公共交通收入以及减少碳排放和缓解拥塞的潜力的好处。此外,我们通过预测未来的交付需求增加来量化UAV-PTV集成的长期收益。基于获得的定量结果,本研究讨论了实用和政策的影响,以支持无人机与PTV的可持续融合。
毫无疑问,俄罗斯在乌克兰的战争已经成为了解未来无人机战争如何形成的最重要的冲突。本研究报告通过对乌克兰战场上经过实战检验的实践的全面分析,确定了九个关键要点。这些经验教训涵盖技术、理论和政策。报告的四个章节探讨了在各个功能和作战领域中提高无人机能力的主要机会。它们还强调了在开发、集成和部署新型无人系统过程中面临的持续挑战。但重要的是,无人机并不是取得战略胜利或打赢战争的灵丹妙药。因此,本报告努力管理对无人机能力的期望,同时强调人力资本的核心作用。事实上,当与新的使能技术相结合时,熟练的专家可以创造出有效的无人机性能。
摘要:2020年秋天在2020年秋天发生的亚美尼亚和阿塞拜疆之间的短暂冲突引起了战略和国防界的轰动。武装僵局,自1994年以来一直在两个前苏联国家之间持续存在,突然通过创新使用现代军事技术而颠覆了。阿塞拜疆无人战斗机(UCAV)对亚美尼亚根深蒂固的部队造成了严重破坏,倒退了一个有争议的边境,该边界已经持续了二十年。这场冲突是否代表了军事事务的革命,充当即将发生的事情的预兆?还是重述了众所周知的概念的重要性,例如控制空气的控制?本文将审查战争的背景和过程,并以更大的观点的好处,随后对现代战争产生影响。
宾夕法尼亚州匹兹堡 - 2025年2月10日 - 今天的库存情报解决方案收集AI宣布将通过Modalai的Voxl 2 Autopilot提供的新的US-MADE-MADE Starling 2 Logis无人机来增强其DJI无人机,用于客户仓库库存数据收集。此添加在第2季度2025中获得,将有助于仓库操作和创新团队最大化收集AI软件解决方案,以提高计数和应用程序灵活性。收集AI计算机视觉技术使无人机可以自主飞行,而无需GPS,WiFi或基础设施更改。机器学习算法分析库存图片,读取和解释远远超出了条形码,包括批号,文本,有效期,案例计数和占用信息。仓库运营商可以将其实时物理库存与仓库管理系统(WMS)数据进行比较,以进行最高准确性所需的任何更改。该解决方案最常用于第三方物流(3PL),零售分销,制造以及食品和饮料,但它
