摘要 - 在过去的十年中,使用自动无人机系统进行测量,搜救或最后一英里的交付呈指数增长。随着这些应用的兴起,需要在复杂和不确定的环境中运行无人机的高度稳健,关键算法。此外,快速快速使无人机能够覆盖更多的地面,提高生产率并进一步增强其用例。一个用于开发高速导航中使用的算法的代理是自动无人机赛车的任务,研究人员将无人机计划无人机通过一系列大门,并尽快避免使用板载传感器和有限的计算能力。速度和加速度分别超过80 kph和4 g,在整个感知,计划,控制和国家估计中提出了重大挑战。为了达到最高性能,系统需要实时算法,这些算法对运动模糊,高动态范围,模型不确定性,空气动力学干扰以及通常无法预测的对手。该调查涵盖了自主无人机在基于模型和基于学习的方法中竞争的进展。我们提供了多年来的领域,其发展的概述,并以将来面临的最大挑战和开放性问题得出结论。
无人驾驶汽车(UAV)技术的成熟和可伸缩性为彻底彻底迅速交付提供了变化的机会。本研究探讨了将无人机与公共交通工具(PTV)整合在一起,以建立一种新颖的交付范式,从而增强了公共交通运营商的收入,并提高了运输系统的效率,而不会损害乘客的便利或运营效率。采用六边形规划技术,本研究确定并量化了PTV的可用时空资源以进行无人机集成。这涉及将迅速交付订单的时空动态与PTV乘客的临时动态保持一致,该动态基于北京海德地区的现场数据。利用这些输出,我们定量分析将无人机与PTV集成在增加公共交通收入以及减少碳排放和缓解拥塞的潜力的好处。此外,我们通过预测未来的交付需求增加来量化UAV-PTV集成的长期收益。基于获得的定量结果,本研究讨论了实用和政策的影响,以支持无人机与PTV的可持续融合。
人工智力现在存在于我们日常生活的许多领域中。它有望领导新的和有效的业务模型,以在私营和公共部门中有效和以用户为中心的服务。在深度学习,(深度)增强学习和神经进化技术方面的AI进步可以为人工通用智能(AGI)铺平道路。但是,AI的开发和使用也带来了挑战。数据语料库中普遍存在用于训练AI和机器学习系统的固有偏见归因于大多数这些挑战。此外,多个实例强调了在基于动力的决策中需要隐私,公平性和透明度的必要性。本书系列将为研究人员,领导者,决策者和决策者提供一条途径,以分享AI最前沿的研究和见解,包括其在道德,可解释的,可解释的,隐私的,可信赖的,可信赖的和可持续的方式中的使用。
将车站作为艾登的待机点,期望精确着陆和起飞。体验快速部署和电池交换,从长时间的停机时间延迟了。车站的心脏是机器人手臂。它不仅可以在降落和起飞过程中充当稳定器,而且还可以执行闪电般的电池互换。
无人机正在广泛部署在建筑中,他们与建筑专业人员之间的相互作用预计将来会增加。但是,在建筑专业人员附近的这些空中机器人的部署可能与影响工作场所安全性和健康状况的其他风险有关。这项研究探讨了无人机在与建筑专业人士不同距离上存在的注意力影响。通过以用户为中心的虚拟现实实验,要求建筑专业人员在跟踪眼睛运动的同时,通过无人机的存在来完成施工任务。结果表明,无人机的存在会影响参与者的注意状态,这些空中机器人吸引了一些建筑专业人员的注意力。参与者的注意状态也受到无人机操作距离的影响,与无人机相比,无人机靠近无人机,而持续时间较短,而不是位于较远距离的人。这项研究的贡献是通过向行业人员告知无人机对工作地点的潜在安全性影响,并协助对行业中使用航空机器人的特定法规的形式化,来确保安全的人无人机相互作用。关键词:无人机,注意力分配影响,建筑安全,人为无人机相互作用,近亲
AUV NG 是法国军备总局 (DGA)、法国海军、泰雷兹公司和 Exail 于 2023 年开始的合作成果。这项工作的目的是优化两家制造商的解决方案的重复使用,并将开发的重点重新放在具有最高附加值的技术上,从而能够在只有一半大小的无人机中集中法国海军目前使用的 A-27 原型机的所有功能。作为扫雷和水下监视系统的关键要素,该无人机将携带泰雷兹未来一代声纳 SAMDIS 600 声纳以及 MMCM 计划的软件套件。 AUV NG 完全融入了法国海军目前正在实施的未来反水雷系统 (SLAM-F),将与根据该计划获得的指挥中心(特别是布雷斯特中心)协同执行任务,并可在未来的水雷战舰队舰船上实施。
1. 部署“死神”无人机和反无人机雷达进行定位和跟踪:海关和边境保护局 (CBP) 拥有一支 MQ-9“死神”无人机机队,这种无人机具有电光/红外 (EO/IR) 功能,可在各种环境中跟踪目标。在适当的情况下,协调机构还应使用反无人机雷达系统,该系统可以在发射地点准确探测无人机——无论这些系统是联邦、商业、州还是地方运营的。海关和边境保护局隶属于国土安全部,需要与非边境执法机构协调,在其正常职责范围之外开展行动。考虑到这一点,目前正在领导无人机入侵调查的联邦调查局应立即正式请求使用所需数量的海关和边境保护局 MQ-9“死神”无人机,与国土安全部协调,以跟踪这些无人机并确定其来源地。在使用“死神”无人机追踪不明无人机时,联邦合作伙伴应直接与新泽西州执法机构协调,以便迅速对无人机着陆地点做出反应。
操作环境 - 自动无人机俄罗斯乌克兰战争是第一次见证双方无人机的全面冲突。俄罗斯已经尝试了能够自主操作的柳叶刀和Kamikaze无人机,而乌克兰正在使用US-设计的SwitchBlade无人机,这些无人机能够使用算法识别目标。已经观察到了无人机中自主或基于AI的技术的缓慢整合,这实际上只是减少人类控制的软件更改。自主无人机的出现是由于较大的飞行数字构成的,这构成了控制飞行中众多无人机,避免障碍物和这些无人机的精确靶向的挑战。专家现在警告说,无人机的扩散正在推动军队将越来越多的控制权移交给人工智能(AI),并最终朝着可以在战场上运作而无需人类参与的系统。这可能需要一个自主保护循环,因为人类无法在没有AI的情况下防御自主无人机。无人机的自主权在分析无人机中的自主权之前,要理解两个术语 - AI和自动化通常可以互换使用。尽管这两个术语都可以更聪明,更有效地操作,但是这两个术语之间几乎没有概念上的差异。AI和自动化的共同点是数据。自动化设备整理数据时,AI系统对其进行了解释。
本文基于人工智能驱动的分析模型,为无人机的多学科概念设计框架提供了一个多学科的概念设计框架。这种方法利用了驱动的分析模型,其中包括空气动力学,结构质量和雷达横截面预测,以将定量数据带到初始设计阶段,从而从各种优化的概念设计中选择了最合适的配置。由于设计优化周期,为以后的设计活动提供了更准确的翼,尾部和机身等关键组件的初始尺寸。同时,生成的结构可以通过设计迭代中的反馈循环实现更合适的设计点选择。因此,除了降低设计成本外,这种方法在整个设计过程中还具有很大的时间优势。
