● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
毫无疑问,俄罗斯在乌克兰的战争已经成为了解未来无人机战争如何形成的最重要的冲突。本研究报告通过对乌克兰战场上经过实战检验的实践的全面分析,确定了九个关键要点。这些经验教训涵盖技术、理论和政策。报告的四个章节探讨了在各个功能和作战领域中提高无人机能力的主要机会。它们还强调了在开发、集成和部署新型无人系统过程中面临的持续挑战。但重要的是,无人机并不是取得战略胜利或打赢战争的灵丹妙药。因此,本报告努力管理对无人机能力的期望,同时强调人力资本的核心作用。事实上,当与新的使能技术相结合时,熟练的专家可以创造出有效的无人机性能。
摘要 - 在过去的十年中,使用自动无人机系统进行测量,搜救或最后一英里的交付呈指数增长。随着这些应用的兴起,需要在复杂和不确定的环境中运行无人机的高度稳健,关键算法。此外,快速快速使无人机能够覆盖更多的地面,提高生产率并进一步增强其用例。一个用于开发高速导航中使用的算法的代理是自动无人机赛车的任务,研究人员将无人机计划无人机通过一系列大门,并尽快避免使用板载传感器和有限的计算能力。速度和加速度分别超过80 kph和4 g,在整个感知,计划,控制和国家估计中提出了重大挑战。为了达到最高性能,系统需要实时算法,这些算法对运动模糊,高动态范围,模型不确定性,空气动力学干扰以及通常无法预测的对手。该调查涵盖了自主无人机在基于模型和基于学习的方法中竞争的进展。我们提供了多年来的领域,其发展的概述,并以将来面临的最大挑战和开放性问题得出结论。
将车站作为艾登的待机点,期望精确着陆和起飞。体验快速部署和电池交换,从长时间的停机时间延迟了。车站的心脏是机器人手臂。它不仅可以在降落和起飞过程中充当稳定器,而且还可以执行闪电般的电池互换。
本文基于人工智能驱动的分析模型,为无人机的多学科概念设计框架提供了一个多学科的概念设计框架。这种方法利用了驱动的分析模型,其中包括空气动力学,结构质量和雷达横截面预测,以将定量数据带到初始设计阶段,从而从各种优化的概念设计中选择了最合适的配置。由于设计优化周期,为以后的设计活动提供了更准确的翼,尾部和机身等关键组件的初始尺寸。同时,生成的结构可以通过设计迭代中的反馈循环实现更合适的设计点选择。因此,除了降低设计成本外,这种方法在整个设计过程中还具有很大的时间优势。
制定基于地理信息系统 (GIS) 的总体/发展规划是 AMRUT 下的重要改革之一。这项改革的目标是利用 GIS 为 AMRUT 计划下的所有城市制定总体规划,并开发通用的数字地理参考基础地图和土地利用图。然而,中小型城镇使用传统 GIS 技术制定总体规划的能力有限,因此,该部希望探索使用无人机 (UAV) 技术为这些城镇制定基于 GIS 的总体规划。为此,在印度测量总监的主持下成立了一个委员会,负责制定应用无人机技术为中小型城镇制定基于 GIS 的总体规划的设计和标准(参见 2018 年 9 月 26 日发布的命令号 K-14031/5/2016-AMRUT(CB)-Part(2))。
收集了包括无人机和干扰因素的数据收集测试数据。无人机数据故意多样化,以各种距离和背景为特色。无人机在遥远的地方测试了模型检测无人机的准确性,该数据的细节受到限制,而在不同背景下的无人机测试了模型对噪声的弹性。根据类似于无人机或与无人机一起发现的对象,故意选择了干扰物数据。由于在选择和标记训练数据时犯了错误,该模型测试了模型被模型中存在的类似特征和偏见误导或愚弄的倾向。在步骤1中,总共收集了12206张图像,其中包括7755张图像和分散图像,其余4451张图像。
摘要:机载地面穿透雷达系统提供了一种安全且效率的方法,可在挑战性地形中测量雪深和积雪地层,并具有潜在的雪崩危险。雪花龙是一种定制的雪测量系统,其中包含一个未螺旋的航空车辆(UAV)平台和雷达有效载荷。专门设计用于在各种雪覆盖场景上进行雪调查,该系统具有针对此类任务的性能属性。在这里,我们介绍了完整系统的技术实施,再加上在Svalbard上进行的三个广泛的现场活动的验证结果。此外,我们还提供了对雪地无人机获得的雪地层测量结果的见解,并原位获得了雪轮剖分以进行比较分析。通过将雷达观测值与1673的共同位置测量降雪深度相关联,范围从5到200 cm,并揭示了高度的一致性,从而产生了r = 0.938的相关系数。雪花源是可靠有效的工具,可在坡度范围内协助当地的雪崩危险评估,其中有关积雪深度和结构的信息至关重要。
操作环境 - 自动无人机俄罗斯乌克兰战争是第一次见证双方无人机的全面冲突。俄罗斯已经尝试了能够自主操作的柳叶刀和Kamikaze无人机,而乌克兰正在使用US-设计的SwitchBlade无人机,这些无人机能够使用算法识别目标。已经观察到了无人机中自主或基于AI的技术的缓慢整合,这实际上只是减少人类控制的软件更改。自主无人机的出现是由于较大的飞行数字构成的,这构成了控制飞行中众多无人机,避免障碍物和这些无人机的精确靶向的挑战。专家现在警告说,无人机的扩散正在推动军队将越来越多的控制权移交给人工智能(AI),并最终朝着可以在战场上运作而无需人类参与的系统。这可能需要一个自主保护循环,因为人类无法在没有AI的情况下防御自主无人机。无人机的自主权在分析无人机中的自主权之前,要理解两个术语 - AI和自动化通常可以互换使用。尽管这两个术语都可以更聪明,更有效地操作,但是这两个术语之间几乎没有概念上的差异。AI和自动化的共同点是数据。自动化设备整理数据时,AI系统对其进行了解释。
这些测试证明了操作员能够从很远距离的直升机上控制一架或多架无人机。此次飞行演示于 2024 年 10 月 9 日在欧盟委员会代表的出席下进行,可以测试不断提高的互操作性水平,直至距离 1,000 公里的另一个国家的直升机控制一个国家的无人机及其观察系统。
