本研究提出可用于考察金融对实体经济的传染、空间溢出和行业聚集效应的金融网络指标。我们建议基于符号化转移熵和皮尔逊相关系数,设计GDP排名前20位国家的金融部门的有向和无向网络。我们以这些网络指标代替原有的道琼斯金融部门作为解释变量,构建高阶信息空间计量经济模型,以检验网络指标的效果和实用性。结果表明,两个网络获得的估计精度较使用原始数据的空间计量经济模型有显著提高,表明网络指标能更有效地捕捉金融系统的动态信息。同时,基于有向网络的精度略高于无向网络,表明符号化转移熵,即有向加权网络,更适合和有效地反映金融领域的关系。此外,结果还显示,在全球金融危机的影响下,一国或地区金融部门与全球金融部门、金融部门与实体经济部门之间的联动性增强,但部分行业特别是公用事业和医疗保健受到的影响较小。本研究尝试利用金融网络指标建模,研究危机对实体经济的传染渠道和行业聚集效应,并提出网络指标在金融领域的实际应用。
耦合振荡器网络中的集群同步是科学界广泛关注的课题,其应用范围从神经网络到社交网络、动物网络和技术系统。这些网络大多是有向的,信息或能量流从给定节点单向传播到其他节点。然而,集群同步方面的大多数工作都集中在无向网络上。这里我们描述了一般有向网络中的集群同步。我们的第一个观察结果是,在有向网络中,节点集群 A 可能单向依赖于另一个集群 B:在这种情况下,只要 B 稳定,A 可能保持同步,但反之则不成立。本文的主要贡献是一种将集群稳定性问题转化为不可约形式的方法。通过这种方式,我们将原始问题分解为最低维的子问题,这使我们能够立即检测到集群之间的相互依赖关系。我们将分析应用于两个感兴趣的例子:一个小提琴演奏者组成的人类网络演奏一首乐曲,音乐家可以激活或停用该乐曲的定向交互;以及具有定向层到层连接的多层神经网络。