高级微分析致力于为客户提供宝贵的答案和见解,而不仅仅是盲目数据。我们的客户可以找到一个响应迅速,有益的合作伙伴,以满足其组成分析需求。通过我们的实验室网络和多样化的科学人员,高级微分析可以找到正确的测试和信息资源的组合,以帮助您识别或量化您感兴趣的综合信息。从通过DMA,TGA,MFI或底环机械性能通过热和机械性能之间的组成与内在性质之间的相关性,可以直接识别许多复杂的混合物。无损或最小破坏性技术,例如表面GD-OES,XRF,XRD和光谱技术,可以在材料中的某些或所有组件上详细介绍。可以通过使用LC-MS,ICP-MS,GC-MS和NMR的色谱和化学消化来分析复杂的混合物。
本报告确定并描述了可用于检查商用运输和通勤飞机结构损坏的新兴无损检测 (NDI) 方法。九类新兴 NDI 技术包括声发射、X 射线计算机断层扫描、背散射辐射、逆向几何 X 射线、先进电磁学(包括磁光成像和先进涡流技术)、相干光学、先进超声波、先进视觉和红外热成像。描述了每种方法的物理原理、一般性能特征和典型应用。此外,还讨论了飞机检查应用以及相关的技术考虑因素。最后,介绍了每种技术的现状,并讨论了它们何时可用于实际飞机维护计划。值得注意的是,这是 DOT/FAA/CT-91/5“老化飞机的当前无损检测方法”的配套文件。
在新型飞机的开发初期,设计寿命或“预期寿命”目标(以飞行周期(起飞和降落)或飞行小时计算)就已经确定了。由于其极端的操作环境,军用战斗机的设计预期寿命可能只有数千个飞行小时。对于民用运输飞机,设计寿命目标通常为数万个飞行周期。在首次飞行之前,在对全尺寸飞机结构进行地面测试时,会积累大量此类周期。了解预期的飞行载荷谱可以实现机身的压力循环,以及机翼、尾翼和其他主要结构的液压载荷。大型数据采集系统可以监测施加的压力和载荷以及由此产生的结构挠度和应变。此过程通常会使用无损检测设备进行定期检查,以监测由此产生的裂纹扩展情况。
在新型飞机的开发初期,设计寿命或“预期寿命”目标(以飞行周期(起飞和降落)或飞行小时计算)就已经确定了。由于其极端的操作环境,军用战斗机的设计预期寿命可能只有数千个飞行小时。对于民用运输机,设计寿命目标通常为数万个飞行周期。在首次飞行之前,在对全尺寸飞机结构进行地面测试时,会积累大量此类周期。了解预期的飞行载荷谱可以实现机身的压力循环,以及机翼、尾翼和其他主要结构的液压载荷。大型数据采集系统可以监测施加的压力和载荷以及由此产生的结构挠度和应变。在此过程中,通常会使用无损检测设备进行定期检查,以监测由此产生的裂纹扩展。
Arista 7280R3系列固定系统(包括7280R3和7280R3K)是数据中心开关的Arista 7000系列组合的关键组件。Arista 7280R3系列是为25G,100G和400G系统构建的,该系统是为最高性能环境构建的,为了满足最大规模的数据中心和服务提供商的需求,它们提供了可扩展的L2和L3资源,并提供了具有高级密度,具有高级功能,用于网络监控,精确的时间和网络虚拟化,以提供可扩展和确定性的网络性能,并改善网络的设计,并改善了op的设计。7280R3功能解决了现代网络和丰富的多媒体内容交付的要求,需要在紧凑而节能的外形效果下提供无损转发解决方案。
量子异常霍尔效应(QAHE)提供了量化的电导和无损传输,而无需外部磁场。[1]为此目的[2-4]将铁磁性与拓扑绝缘子结合起来的想法促进了材料科学。[5,6]这导致了QAHE在Cr-和V掺杂(BI,SB)2 TE 3 [7-11]中的实验发现,并在霍尔电阻率上进行了预先量化的量化值,以至于均为每百万个次数。[12–15] V或Cr替代的稳定3 +构型通过耦合过渡金属原子的磁矩来实现铁磁性,从而实现铁磁性。因此,通过垂直磁化 - 在拓扑表面状态的狄拉克点上的间隙开口,时间反转对称性被损坏。[2-5]该差距具有预先量化的电导率的手性边缘状态。但是,
氢技术现在使我们能够将其视为“无排放,无损电池”。澳大利亚国家氢战略最初是在利基集线器中浓缩氢的使用,这将促进国内需求。通过我们的合作伙伴关系和开发综合能源解决方案的能力,我们能够协助您将氢作为替代能源。我们设计项目,协调市场以及提供由澳大利亚丰富的可再生能源驱动的新技术(电子和燃料电池)的能力。重新思考可持续性PTY Ltd ACN:622 347 273级别10,墨尔本街530号,墨尔本VIC 3000 www.rethinksustainability.com.au Rob Gell AM。m:0412 327 185 E:rob@rethinksustainability.com.au Justin McFarlane。m:0410 325 111 E:justin@rethinksustainability.com.au
摘要。格林维尔技术学院航空维修技术培训机构(美国南卡罗来纳州格林维尔)与克莱姆森大学(美国南卡罗来纳州克莱姆森)最近通过合作,利用先进的计算机技术显著改善了航空维修技术人员的培训。这些应用包括:大型飞机货舱的 2.5D 和 3D 虚拟环境,交互方式从完全沉浸式(使用头戴式显示器和 6 自由度鼠标)到半沉浸式(使用空间跟踪悬挂式触摸感应窗口显示器)再到非沉浸式(使用基本台式计算机和鼠标);以及涡轮发动机叶片的 3D 虚拟环境,可在其中练习无损检测方法(例如内窥镜检查)。本文讨论了将这些技术整合到现有教育课程中,并提供了有关如何实施和评估此类计划的见解。
被电磁场捕获的电子和离子长期以来一直是重要的高精度计量仪器,最近也被提议作为量子信息处理的平台。这里我们指出,由于这些系统具有极高的荷质比以及低噪声量子读出和控制,因此它们还可用作高灵敏度的带电粒子探测器。特别是,这些系统可用于检测比典型电离尺度低许多数量级的能量沉积。为了说明,我们提出了一些粒子物理学中的应用。我们概述了一种无损飞行时间测量方法,该方法能够对缓慢移动的准直粒子进行亚 eV 能量分辨率测量。我们还表明,目前的设备可用于对环境暗物质粒子携带小电毫电荷≪ e 的模型提供具有竞争力的灵敏度。我们的计算可能还有助于表征来自带电粒子背景的量子计算机噪声。