SAM 技术分析反射波和透射波的强度和相位,以创建反映样本声阻抗变化的视觉图像,从而揭示内部裂纹和缺陷,例如分层和空隙。在这种无损检测过程中,压电换能器会产生超声波,该换能器将电信号转换为声信号,反之亦然(检测阶段)。通过一组声透镜将声波聚焦在样本内部,以检查系统的内部。
摘要 结构健康监测和无损检测技术通常用于评估高价值航空航天、机械和民用系统的生命周期和可靠性。维护和检查间隔通常基于时间,并依赖于结构健康监测/无损检测技术来检测由疲劳或环境损坏造成的宏观损坏。当前的工作提出了一种综合材料-结构-动力学方法来提供结构健康的状态感知。所提出的方法将传统的结构健康监测/无损检测重点从寻找裂纹转移到基于跟踪材料-结构-动力学状态的能量变化的健康状态感知。在暴露于非线性谐振的悬臂结构中跟踪能量变化,其中梁的应变能量被导出并用于确定健康状态指数。纳米压痕用于探测梁的近表面机械性能,以表征局部材料变化与疲劳循环的关系。考虑采用非线性超声方法将局部材料行为变化与梁的动态性能变化联系起来。调查的目的是将传统上分离的材料、结构和动力学方法与结构健康监测/无损检测联系起来,同时提供
- 这些部位是否受到足够高的应力。因此,显然需要对材料进行预防性调查,以验证其实际损伤状态[9]。 2 无损控制 无损控制技术 (NDT) 是最好的缺陷评估方法之一 [10],它可以识别第一阶段结构损伤,从而防止结构失效并减少经济损失 [11]。该技术的优点之一是远程控制,可降低运营成本、停机时间等... [12] [13]。事实证明 [14] [15],材料缺陷(如微裂纹、分层、夹杂物)是非线性的来源。为了利用这一特性,使用超声波的非线性无损检测 (NNDT) 已在 NDT 中建立 [16] [17]。已经证明 [18] [19] [20],NNDT 在检测小损伤方面比传统的线性技术 [21] [22] 具有更高的灵敏度。事实上,非线性指标具有更宽的动态范围,通常比线性参数高出十倍 [23] [24]。因此可以得出结论,非线性参数对缺陷检测的灵敏度远高于线性参数 [25]。超声波已成为无损检测技术的有效选择。3 非线性超声波超声波对结构损伤高度敏感,向各个方向传播,传播速度快,
程序。准备并维护纠正措施报告和预防措施报告。输入并维护质量人员的无损检测文件、医疗筛查、资格和检查员印章。输入并维护单位级物流系统-航空(增强型)(ULLS-A(E))、主要维护事件 (MME)、用户个人信息、PID 和角色。积累每日数据并准备每月活动报告和审计月度汇总。
• TWI 技术中心(威尔士)该地区与学术界(高等教育和高等教育层次)有着密切的联系,并拥有一批具有国家和国际联系的创新研究中心,专门研究氢能、能源系统、生命科学和制造业;涵盖从复合材料、推进、材料工程、培训和技能、冶金和涂层到最先进的无损检测(NDT)方法和尖端检测技术等一系列领域。
目标是:检查和维护良好的工作状态,防止可靠性损失,减少技术系统的停机时间。在航空领域,技术系统是飞机(直升机、飞机),正常运行时间被视为适航状态(定期操作:润滑、润滑、定期测试/检查不同系统和设备、目视检查、无损检测、维护工作、更换工作)。预防性维护监视技术系统工作状态的演变,以便在获取替换零件所需的合理延迟后安排干预。
AWS-A2.4,“焊接、钎焊和无损检测,标准符号”,于 1986 年 11 月 21 日被国防部 (DoD) 采用。国防部活动提出的变更必须提交给国防部采纳活动:海军海上系统司令部指挥官,SEA 03R42,2531 Jefferson Davis Highway,阿灵顿,VA 22242-5160。可以从美国焊接学会购买此文件的副本,地址为 550 NW LeJeune Road Miami,佛罗里达州,美国,33126。http://www.amweld.org/ ____________________________________
KODAK Industrex HPX-1 一举提升了无损检测市场数字功能的可靠性。多板处理提高了输出效率。正压过滤空气系统确保实验室和远程操作中的图像清晰。可在恶劣环境下成像的抗冲击和抗震设计为在现场使用数字成像带来了新的信心。KODAK INDUSTREX HPX-1 计算机射线照相系统的每个方面都是为工业应用而设计的,从符合人体工程学的手柄到板的平直进给路径。
薄壁结构 – 机翼;机身;尾翼;薄壁近似。金属材料 – 材料化学;成型;轻质合金;超级合金。复合材料 – 混合规则;层压板理论;制造;功能复合材料。航空航天结构部件分析 – 弯曲;剪切;扭转;组合载荷;应力;扭转角;挠度;疲劳;断裂。无损检测 – 超声波检测;压电换能器;导波检测;相控阵扫描;结构健康监测。有限元分析 – 一维元素;二维元素;三维元素;高阶元素;静态分析;动态分析。