Abraxane 紫杉醇 白蛋白 NP 美国 (2005) 静脉注射 癌症 Doxil 阿霉素脂质体 美国 (1995) 静脉注射 癌症 Feraheme N/A 聚合物涂层氧化铁 NP 美国 (2009) 静脉注射 贫血 Feridex IV N/A 葡聚糖涂层氧化铁 NP 美国 (1996) 静脉注射 MRI 造影剂 Genexol PM 紫杉醇 聚合物胶束 韩国 (2007) 静脉注射 癌症 Marqibo 长春新碱脂质体 美国 (2012) 静脉注射 白血病 Mepact Mifamurtide 脂质体 欧洲 (2009) 静脉注射 骨肉瘤 SPIKEVAX mRNA 脂质 NP 美国 (2022) 肌肉注射 新冠疫苗 COMIRNATY mRNA 脂质 NP 美国 (2021) 肌肉注射 新冠疫苗 Nano Therm N/A 氧化铁NP 欧洲 (2010) 肿瘤内癌症 Onivyde 伊立替康脂质体 美国 (2015) 静脉内癌症 ONPATTRO siRNA 脂质 NP 美国 (2018) 静脉内多发性神经病变 VISUDYNE Vertepor n 脂质体 美国 (2000) 静脉内黄斑变性
我们展示了如何分别培训算法思维和程序的第一步。没有假定学习者有任何先前的经验。在实践中描述并测试了两名10年级学生的一般框架和一系列培训任务。都能够在两天内使用笔和纸编写相对复杂的程序。要训练算法思维,将计算问题作为游戏提交给学习者。粗略地说,获胜的策略对应于解决该问题的算法。因此,如果学习者在各种情况下始终如一地赢得游戏,则表明他们找到了算法。我们描述了将计算问题转化为这样的游戏的一般机制。对于编程部分,向学习者展示了如何从跟踪构建程序。程序是用简单的语言指定的,该语言取决于计算的基本模型(考虑图灵机,倒计计算机或构造设置架构);这样的模型可以看作是概念机。
2024年10月7日,卡罗林斯卡研究所的诺贝尔议会授予了今年的诺贝尔·安布罗斯(Victor Ambrose)和加里·鲁夫库(Gary Ruvkun)的诺贝尔生理学或医学奖,“因为MicroRNA的疾病及其在转录后基因调节中的作用及其作用”(https://wwwwwwwwwwwww..nobelprize.ornice.rine/mide sime ofence oferne oferne of to MicroRNA/)。这项获奖研究发表在1993年的Back-back Compers中,在细胞中证明了Lin-4 microRNA在从较大的第二阶段通过base-pair for Attart MRNA降低了lin-14 mRNA在细胞质量中的LIN-14 mRNA的翻译和降解。当Ruvkun及其同事后来确定并描述了更加保守的Let-7 microRNA,在从小幼虫晚期到成人阶段的转录后调节作用在从软体动物到垂直阶段的动物的过渡期间起着类似的调节作用(但在植物,酵母,酵母,豆科群岛或犬科动物的发展中都没有多细胞生物的机械[1]。
80 戊-1-铵 ( m = 4),81 己-1-铵 ( m = 5),81 庚-1-铵 ( m = 6),82 辛-1-铵 ( m = 7),82 壬-1-铵 ( m = 8);82 癸-1-铵 ( m = 9),82, 83 十一-1-铵 ( m = 10);83 RP2,2-(甲硫基)乙胺 (MTEA);84 RP3,烯丙基铵 (ALA);85 RP4,丁-3-炔-1-铵 (BYA);86 RP5,2-氟乙基铵;87 RP6,异丁基铵 (iso-BA);88 RP7,4-丁酸铵 (GABA);89 RP8,5-戊酸铵 (5-AVA); 90 RP9,杂原子取代的烷基铵;91 RP10,环丙基铵;92, 93 RP11,环丁基铵;92, 93 RP12,环戊基铵;92, 93 RP13,环己基铵;92, 93 RP14,环己基甲基铵;94 RP15,2-(1-环己烯基)乙基铵;95, 96 RP16,(羧基)环己基甲基铵 (TRA);97 RP17,苯基三甲基铵 (PTA);98 RP18,苄基铵 (BZA);99-104 RP19,苯乙铵 (PEA);50, 100, 101, 105-108 RP20,丙基苯基铵 (PPA); 100, 101 RP21,4-甲基苄基铵;109 RP22,4-氟苯乙铵 (F-PEA);106, 110-113 RP23,2-(4-氯苯基) 乙铵 (Cl-PEA);111 RP24,2-(4-溴苯基) 乙铵 (Br-PEA);111 RP25,全氟苯乙铵 (F5-PEA);114 RP26,4-甲氧基苯乙铵 (MeO-PEA);112 RP27,2-(4-芪基)乙铵 (SA);115 RP28,2-(4-(3-氟)芪基)乙铵 (FSA); 115 RP29,2-噻吩基甲基铵 (ThMA);116 RP30,2-(2-噻吩基)乙铵;116 RP31,2-(4'-甲基-5'-(7-(3-甲基噻吩-2-基)苯并[c][1,2,5]噻二唑-4-基)-[2,2'-联噻吩]-5-基)乙-1-铵 (BTM);117 RP32,1-(2-萘基)甲铵 (NMA);118 RP33,2-(2-萘基)乙铵 (NEA);118 RP34,萘-O-乙铵;119 RP35,芘-O-乙铵;119 RP36,苝-O-乙铵; 119 RP37,3-碘吡啶(IPy);97 RP38,咔唑烷基铵(CA-C4)。120 DJ 相:DJ1,丙烷-1,3-二胺(PDA,m = 3);121 丁烷-1,4-二胺(BDA,m = 4);122-126 戊烷-1,5-二胺(m = 5);125 己烷-1,6-二胺(HDA,m = 6);124,125 庚烷-1,7-二胺(m = 7);125 辛烷-1,8-二胺(ODA,m = 8);124,125 壬烷-1,9-二胺(m = 9)125 癸烷-1,10-二胺(m = 10); 126 十二烷-1,12-二铵(m=12);126, 127 DJ2,N 1 -甲基乙烷-1,2-二铵(N-MEDA);128 DJ3,N 1 -甲基丙烷-1,3-二铵(N-MPDA);128 DJ4,2-(二甲氨基)乙基铵(DMEN);129 DJ5,3-(二甲氨基)-1-丙基铵(DMAPA);129 DJ6,4-(二甲氨基)丁基铵(DMABA);129 DJ7,质子化硫脲阳离子;130 DJ8,2,2′-二硫代二乙铵;91, 131 DJ9,2,2′-(亚乙基二氧基)双(乙基铵) (EDBE);132 DJ10,2-(2-
纳米技术越来越多地用于抗癌治疗,从而提高了治疗有效性,同时最大程度地减少了不良影响。无机纳米颗粒(INP)是普遍的纳米载体,适用于广泛的抗癌应用,包括治疗剂,成像,靶向药物递送和治疗学,因为它们具有优质的生物相容性,独特的光学特性,独特的光学特性以及通过多功能表面功能化修饰的能力。在过去的几十年中,在这个新兴的免疫治疗领域中,INP的高适应性使它们成为肿瘤免疫疗法和联合免疫疗法的良好携带者选择。肿瘤免疫疗法需要针对肿瘤位置或免疫器官的免疫调节疗法的靶向输送,以引起免疫细胞并诱导肿瘤特异性免疫反应,同时调节免疫稳态,尤其是切换肿瘤免疫抑制微抑制微环境。本评论探讨了各种INP设计和配方,以及它们在肿瘤免疫疗法和联合免疫疗法中的就业。我们还引入了利用表面工程策略来创建多功能INP的详细演示。生成的INP证明了刺激和增强免疫反应,特定靶向以及调节癌细胞,免疫细胞及其常驻微环境的能力,有时以及成像和跟踪能力,暗示它们在多任务中的免疫疗法中的潜力。此外,我们讨论了肿瘤治疗中基于INP的组合免疫疗法的承诺。
中国科学院化学研究所,吉林长春 130022,中国 b 中国科学技术大学,安徽合肥 230026,中国 c 中国科学院大学,北京 100049,中国 d 广东省危险化学品应急检测重点实验室,
摘要基于密度功能理论(DFT)筛选新材料特性的高计算需求仍然是对未来几十年过渡到碳中性环境必不可少的清洁和可再生能源技术的强大限制。机器学习以其天生的能力来处理大量数据和高维统计分析。在本文中,使用密度功能理论从高通量计算获得的现有数据集进行了监督的机器学习模型,用于预测无机化合物的Seebeck系数,电导率和功率因数。分析表明,热电特性对有效质量具有很强的依赖性,我们还提出了一个机器学习模型,以预测高表现的热电材料,该模型达到了95%的效率。分析的数据和开发的模型可以通过提供更快,更准确的热电性能预测,从而有助于发现高效的热电材料,从而显着促进创新。
生物可吸收电子设备作为临时生物医学植入物,代表了一类新兴技术,与目前需要在使用一段时间后进行手术移植的一系列患者病症相关。要获得可靠的性能和良好的降解行为,需要能够作为封装结构中生物流体屏障的材料,以避免有源电子元件过早降解。本文提出了一种满足这一需求的材料设计,其防水性、机械柔韧性和可加工性优于替代品。该方法使用由旋涂和等离子增强化学气相沉积形成的聚酐和氮氧化硅交替膜的多层组件。实验和理论研究调查了材料成分和多层结构对防水性能、水分布和降解行为的影响。电感电容电路、无线电力传输系统和无线光电设备的演示说明了该材料系统作为生物可吸收封装结构的性能。
设计高活性催化剂的关键是确定活性的来源。然而,这仍然是一个挑战。[8,9] 特定催化剂的活性传统上与其表面性质有关。因此,具有大表面积、良好导电性和高迁移率的材料被认为是良好的催化剂,因为它们具有丰富的活性位点,有利于氧化还原反应中中间体的吸附和电子转移。这是广泛使用的催化剂合成策略的动机,例如纳米结构化、掺杂、合金化或添加缺陷。每种方法都旨在暴露优先晶体表面或对其进行工程改造以提高其活性。[10–12] 然而,从设计的角度快速准确地确定活性位点的位置仍然是一项艰巨的任务,这使得从许多潜在的有趣材料中发现高性能催化剂成为一项挑战。拓扑材料具有稳健的表面态和高迁移率的无质量电子。 [13–15] 此外,无论是从理论还是实验角度,许多最先进的催化剂(如 Pt、Pd、Cu、Au、IrO 2 和 RuO 2 )都被认为具有拓扑衍生的表面态 (TSS)。[16,17] 因此,有证据表明 TSS 在催化反应中发挥着重要作用。[18,19] 此类状态主要由