准确而稳健地预测药物-靶标相互作用 (DTI) 在药物发现中起着至关重要的作用。尽管人们在预测新型 DTI 方面投入了大量精力,但现有方法仍然存在标记数据不足和冷启动问题。更重要的是,目前缺乏阐明药物和靶标之间作用机制 (MoA) 的研究。区分激活和抑制机制对于药物开发至关重要且具有挑战性。在这里,我们介绍了一个称为 DTIAM 的统一框架,旨在预测药物和靶标之间的相互作用、结合亲和力以及激活/抑制机制。DTIAM 通过自监督的预训练从大量无标记数据中学习药物和靶标表示,从而准确提取药物和靶标的子结构和上下文信息,从而有利于基于这些表示的下游预测。DTIAM 在所有任务中都比其他最先进的方法实现了显着的性能提升,尤其是在冷启动场景中。此外,独立验证证明了 DTIAM 强大的泛化能力。所有这些结果表明,DTIAM 可以提供一种实用的工具来预测新型 DTI 并进一步区分候选药物的作用机理。DTIAM 首次提供了一个统一的框架,可以准确、稳健地预测药物-靶标相互作用、结合亲和力以及激活/抑制机制。
摘要:本文探讨了发光硅纳米线 (NW) 在商业生物传感纳米器件这一日益发展的领域中的应用前景,用于选择性识别蛋白质和病原体基因组。我们通过薄膜金属辅助化学蚀刻法制备了室温下发射波长为 700 nm 的量子限制分形硅纳米线阵列,产量高,成本低。光的多次散射和弱局域化产生的迷人光学特性促进了硅纳米线作为高灵敏度和选择性光学生物传感平台的使用。在这项研究中,无标记硅纳米线光学传感器经过表面改性,可通过抗原-基因相互作用选择性检测 C 反应蛋白。在这种情况下,我们报告的最低检测限 (LOD) 为 1.6 fM,提高了在唾液或血清分析中检测不同动态范围的灵活性。通过改变纳米线表面的功能化程度,使其适应特定抗原,纳米线生物传感器的发光猝灭可用于测量乙肝病毒病原体基因组,无需 PCR 扩增,在真实样本或血液基质中的 LOD 约为 20 份。令人鼓舞的结果表明,纳米线光学生物传感器可以以前所未有的灵敏度(LOD 2 × 10 5 sEV/mL)检测和分离标记有 CD81 蛋白的细胞外囊泡 (EV),因此即使在少量囊胚腔液中也可以测量它们。
基于疫苗的病毒(VACV)的载体广泛用作疫苗和癌症免疫疗法。VACV工程传统上依赖于父母病毒基因组和含转基因转移质粒之间的同源重组,这是一个不具体的过程,它需要使用选择或筛选标记物来分离重组者。这种方法的最新扩展试图通过使用CRISPR-CAS9工程来裂解感染细胞中的病毒基因组,以增强持续转基因病毒的恢复。但是,这些方法并不能完全消除WT病毒后代的产生,因此继续需要多轮病毒传播和斑块纯化。在这里,我们描述了MAVERICC(通过体外CRISPR/CAS9裂解对重组的无标记疫苗病毒工程),这是一种以克服当前限制的方式来设计重组VACV的新策略。Mavericc还利用CRISPR/CAS9系统,但不需要标记,并且在一个步骤中基本上可以对所需的重组剂进行本质上的纯制剂。我们使用这种方法在Vacv基因组中的多个位置和组合中引入点突变,插入和缺失。MAVERICC的效率和多功能性使其成为在病毒基因组中任意选择的位置生成突变体和突变体库以构建复杂的VACV载体的理想选择,并促进对矢量的改善,并促进POXVIRUS生物学的研究。2021 Elsevier Ltd.保留所有权利。
运动技能学习使生物可以与环境有效相互作用,并依靠将感觉反馈与电机输出相结合的神经机制。虽然感觉反馈(例如与运动动作相关的听觉提示)增强了人类运动性能,但其作用机理的理解很少。开发可靠的增强运动技能学习动物模型对于开始剖析这种增强的生物系统至关重要。我们假设在运动任务期间连续的听觉反馈将促进小鼠的复杂运动技能。我们使用DeepLabcut开发了一个闭环系统,以实时无标记跟踪鼠标前爪动作,并具有高处理速度和低延迟。通过将前言的动作编码到不同频率的听觉音调中,小鼠在到达任务期间接收了连续的听觉反馈,需要将左前爪垂直位移到目标。成年小鼠在4 d培训中接受了听觉反馈或没有反馈的培训。与对照组相比,接收听觉反馈的小鼠表现出明显增强的运动技能学习。对轨迹的聚类分析表明,在运动训练的第2天之前,听觉反馈小鼠建立了一致的到达轨迹。这些发现表明,实时,运动编码的听觉反馈有效地促进了小鼠运动技能。这种闭环系统利用高级机器学习和实时跟踪,为探索运动控制机制和通过增强的感觉反馈开发运动障碍的治疗策略提供了新的途径。
非编码 RNA(ncRNA)是恶性疟原虫免疫逃避和传播的新兴调节因子。RUF6 是一个由 RNA 聚合酶 III 转录但积极调节 Pol II – 转录 var 毒力基因家族的 ncRNA 基因家族。目前尚不清楚 RUF6 ncRNA 如何与下游效应物连接。我们开发了一种 RNA 引导的蛋白质组学发现 (ChIRP-MS) 方案来识别体内 RUF6 ncRNA - 蛋白质相互作用。用生物素化的反义寡核苷酸纯化 RUF6 ncRNA 相互作用组。定量无标记质谱法鉴定出几种与基因转录相关的独特蛋白质,包括 RNA Pol II 亚基、核小体组装蛋白和 DEAD 盒解旋酶 5 (DDX5) 的同源物。 Pf-DDX5 的亲和力纯化鉴定出最初由我们的 RUF6-ChIRP 方案发现的蛋白质,验证了该技术在鉴定恶性疟原虫中的 ncRNA 相互作用组方面的稳健性。核 Pf-DDX5 的诱导置换导致活性 var 基因的显着下调。我们的工作鉴定出一种 RUF6 ncRNA - 蛋白质复合物,它与 RNA Pol II 相互作用以维持 var 基因表达,包括一种可能解决 var 基因中 G-四链体二级结构以促进转录激活和进展的解旋酶。
自发的拉曼显微镜通过直接揭示分子的振动光谱,以无标记和非侵入性方式揭示了样品的化学成分。但是,其极低的横截面可防止其应用于快速成像。刺激的拉曼散射(SRS)得益于非线性过程的连贯性,通过几个数量级扩大信号,从而解开了提供分析信息以阐明具有亚纤维分辨率的生化机制的高速显微镜应用。尽管如此,在其标准实现中,窄带SRS一次只能以一个频率提供图像,这不足以区分重叠的拉曼频段的成分。在这里,我们报告了配备有自制的多通道锁定放大器的宽带SRS显微镜,同时在32频率下测量SRS信号,集成时间降至44μs,从而允许详细的,高空间分辨率的样品映射。我们通过测量单个脂质液滴水平的肝细胞中不同脂肪酸的相对浓度,通过测量不同脂肪酸的相对浓度来区分异质样品的化学成分的能力,并通过将纤维固醇模型中的肿瘤与脑肿瘤组织与周围肿瘤区分开来。©2022作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1063/5.0093946
人脑的发展是遗传和环境因素塑造的。由于神经信息传播中的性二态性,在人类中发现了认知功能的性别差异。许多研究报道了教育对认知功能的作用。然而,很少的工作研究了教育对基于健康人群的认知性别差异和背后的神经机制的影响。在这项研究中,使用威斯康星州卡分类测试(WCST)来检查135名泰语健康受试者认知功能的性别差异,并使用无标记的无标记定量蛋白质组学方法和生物信息学分析来研究性别特异性神经释放性释放性神经释放蛋白相关的蛋白质相关蛋白质表达谱。结果显示了两个WCST子得分的性别差异:基本教育组的总纠正和总错误百分比(贝叶斯因子> 100),男性的表现更好,而在二级和第三级教育水平中消除了这种差异。更重要的是,男女之间的11种差异表达的蛋白质(FDR <0.1)在两个教育群体中都呈现,其中大多数在女性中上调。这些DEP的一半与NACHR3直接相互作用,而另一个更深端通过与雌激素相互作用,将其他深度直接连接到胆碱能途径。这些发现提供了初步的迹象,表明胆碱能 - 雌激素的相互作用与教育对泰国健康人群中认知性别差异的影响有关,并且可能支持教育的影响。
邻近依赖性生物素化与质谱联用可以表征亚细胞蛋白质组。该技术通过揭示亚突触蛋白质网络(例如突触间隙和突触后密度)显著推动了神经科学的发展。在这种详细水平上分析蛋白质对于理解神经元连接和传递的分子机制至关重要。尽管邻近标记最近成功应用于各种神经元类型,但它尚未用于研究血清素系统。在这项研究中,我们发现了血清素对基于辣根过氧化物酶 (HRP) 的生物素化的未报道的抑制机制。我们的结果表明,血清素显着降低 HEK293T 细胞和原代神经元中不同生物素-XX-酪胺 (BxxP) 浓度的生物素化水平,而多巴胺的干扰最小,突出了这种抑制的特异性。为了抵消这种抑制,我们证明了 Dz-PEG(一种通过偶氮偶联反应消耗血清素的芳基重氮化合物)可恢复生物素化效率。无标记定量蛋白质组学证实血清素会抑制生物素化,而 Dz-PEG 可有效逆转这种抑制。这些发现强调了在邻近依赖性生物素化研究中考虑神经递质干扰的重要性,尤其是对于神经科学中细胞类型特异性分析而言。此外,我们还提供了一种缓解这些挑战的潜在策略,从而提高此类研究的准确性和可靠性。
摘要:微藻可以分别利用大气中的二氧化碳和阳光作为碳源和能量来源,产生工业相关的代谢物。开发用于高通量基因组工程的分子工具可以加速产生具有改良性状的定制菌株。为此,我们开发了一种基于 Cas12a 核糖核蛋白 (RNP) 和同源定向修复 (HDR) 的基因组编辑策略,以产生微藻 Nannochloropsis oceanica 的无疤痕和无标记突变体。我们还开发了一种基于附加质粒的 Cas12a 系统,用于在目标位点有效地引入插入/缺失。此外,我们利用 Cas12a 处理相关 CRISPR 阵列的能力来执行多路复用基因组工程。我们在一次转化中有效地靶向宿主基因组中的三个位点,从而朝着微藻的高通量基因组工程迈出了重要一步。此外,还开发了一种基于 Cas9 和 Cas12a 的 CRISPR 干扰 (CRISPRi) 工具,用于有效下调目标基因。我们观察到在 N. oceanica 中用 dCas9 执行 CRISPRi 后,转录水平降低了 85%。总体而言,这些发展大大加速了 N. oceanica 的基因组工程工作,并可能为改良其他微藻菌株提供通用工具箱。关键词:Nannochloropsis、微藻、基因组编辑、CRISPR-Cas、基因沉默、核糖核蛋白、Cas9、Cas12a ■ 介绍
新型植物育种技术 (NPBT) 旨在突破果树品种的传统育种限制,以获得感官性状改良、抗生物和非生物胁迫的新品种,并通过(克隆)选择保持数百年来的果实品质。了解控制特定性状的基因对于 NPBT 的使用至关重要,例如基因组编辑和同源杂交。在研究包括柑橘在内的果树品种的国际科学界框架内,NPBT 主要用于应对病原体威胁。柑橘可以利用 NPBT,因为它具有复杂的物种生物学(无籽、无融合生殖、高杂合性和长幼期)和体外操作能力。据我们所知,通过转基因对柑橘进行基因组编辑已成功利用抗性基因 CsLOB1 在甜橙和葡萄柚中诱导出对柑橘细菌性溃疡病的抗性。未来,NPBT 还将用于改善果实性状,使其更健康。应用 NPBT 后植物的再生是一个瓶颈,因此有必要优化当前协议的效率。我们将讨论使用来自幼小的离体植株和成熟植株的外植体的优缺点。本综述中讨论的其他主要问题与对无标记系统的要求以及缩短漫长的幼苗期有关。本综述旨在总结文献中适用于柑橘的方法和途径,重点关注使用 NPBT 之前观察到的原则。