图1鼠类膀胱癌模型中α1-蛋白质的剂量依赖性治疗作用。a,Alpha1-Oreate治疗模型的示意图。膀胱癌。治疗组在第3、5、7、7、9和11天接受静脉输注(1.7、8.5或17毫米)接受α1-olete。假处理的小鼠接受了PBS,所有小鼠在第12天处死。b,α1-oleate的剂量依赖性作用(11/11),是根据膀胱膀胱病理学的宏观检查得出的。c,膀胱重量,膀胱大小和肿瘤区域的比较(另见图2)。数据以两个实验的平均值±SEM表示(= 6 + 5小鼠, * <.05,n p ** <.01和*** <.001与P p假手术治疗的小鼠相比)。重复实验,请参见图S2
固态发光有机化合物已在各种各样的研究领域找到了无数应用,从LED系统1到刺激响应开关2和化学传感器3。这是因为它们与基于重金属离子的发射器和量子点相比成本低、易于扩大规模且毒性较低或无毒性。在聚合物材料的某些应用中,观察纳米级变化的可能性可能有助于理解特性和纳米组织的细微变化,这些变化可能对材料的本体特性产生巨大影响。4 在这种情况下,将发光有机化合物和聚合物结合起来可以成为一种很好的方法,使材料能够在可能在失效前改变其物理特性的条件下自主监测其长期稳定性。
固态发光有机化合物已在各种各样的研究领域找到了无数应用,从LED系统1到刺激响应开关2和化学传感器3。这是因为它们与基于重金属离子的发射器和量子点相比成本低、易于扩大规模且毒性较低或无毒性。在聚合物材料的某些应用中,观察纳米级变化的可能性可能有助于理解特性和纳米组织的细微变化,这些变化可能对材料的本体特性产生巨大影响。4 在这种情况下,将发光有机化合物和聚合物结合起来可以成为一种很好的方法,使材料能够在可能在失效前改变其物理特性的条件下自主监测其长期稳定性。
近年来,文献中提出了越来越多的被动辐射冷却材料,由于其独特的稳定性,无毒性和可用性,其中有几个示例依赖于使用二氧化硅(SIO 2)。尽管如此,由于其散装声子 - 孔子带,Sio 2在大气透明度窗口内呈现出明显的反射峰(8-13μm),从而导致发射率降低,这构成了挑战,以实现对亚物种的次级辐射辐射冷却的标准。因此,该领域的最新发展专门用于设计Sio 2光子结构的设计,以增加散装SIO 2辐射冷却器的冷却潜力。本综述旨在通过评估其冷却效率及其可扩展性来确定SIO 2辐射发射器的最有效的光子设计和制造策略,从而对各种类型的各种类型的sio 2 radiative Coolers sio(数值和实验)进行了深入的分析。
摘要 脂质纳米载体因具有可生物降解、生物相容性、无毒性、无免疫原性等优点,在药物输送方面得到了广泛的研究。然而,传统脂质纳米载体存在靶向性差、易被网状内皮系统捕获、消除快等缺点,限制了药物输送效率和治疗效果。因此,一系列多功能脂质纳米载体被开发出来,以增强药物在病变部位的蓄积,旨在提高各种疾病的诊断和治疗效果。本文综述了脂质纳米载体的研究进展和应用,从传统到新型功能性脂质制剂,包括脂质体、刺激响应型脂质纳米载体、可电离脂质纳米颗粒、脂质杂化纳米载体以及生物膜伪装纳米颗粒。
生物塑料为食品包装中合成塑料的有希望的替代品,由于其生物降解性和无毒性。但是,它们的机械性能和水灵敏度有限,阻碍了广泛采用。在这项研究中,使用溶液铸造方法制备了基于淀粉的复合生物塑料膜,该方法结合了碱性处理的柠檬草纤维(2-10 wt%)和柠檬草精油(1-3%)作为增强材料。纤维表征揭示了由于碱性处理的结果,结构性,热和形态改善。增强的生物塑料膜表现出增强的机械性能,最高为2.5MPa,这归因于与淀粉基质的改进的纤维整合。此外,将柠檬草精油掺入显着提高了屏障特性,将水吸收降低至30%,并将水的渗透性降至6.7615x10 -11 g/s.m.m.pa。这些发现证明了用LF和LEO对食品包装应用增强的淀粉生物塑料的适用性。
胰腺腺癌 (PDAC) 患者的 5 年生存率为 8%,是美国所有癌症中最低的。传统的化疗方案,例如基于吉西他滨和氟尿嘧啶的方案,通常只能延长数月的生存期。因此,迫切需要有效的精准靶向治疗来大幅提高生存率。我们利用一个平台开发了一种新的 FDA 批准药物组合,该组合将靶向胰十二指肠同源框 1 (PDX1) 和杆状病毒凋亡重复序列抑制剂 5 (BIRC5),利用这些靶基因的超级启动子来查询 FDA 批准的药物库。我们确定并选择了二甲双胍、辛伐他汀和地高辛 (C3) 作为 FDA 批准药物的新组合,这些药物被证明可以有效靶向小鼠人类 PDAC 肿瘤中的 PDX1 和 BIRC5,且无毒性。
Natron的电池技术中发现的特定材料平台基于一个称为Prussian Blue的电极家族。几个世纪以来生产和商业地用于颜料和染料,但仅在过去的十年中,普鲁士蓝色才成为钠离子储能的候选者。普鲁士蓝色为色素行业提供的相同优势,包括化学稳定性和无毒性,使其成为用于电池中的有吸引力的材料。NATRON电池电池与传统锂离子和铅酸电池具有相同的结构,包括正电极(阴极),负电极(阳极),两个电极之间的多孔分离器和一个液体电解质,该电解质可以使电荷(离子)在电极之间向后传递(离子)。所有这些细胞组件都包装到密封的容器中,并带有正末端和负末端,可将电池连接到电路。NATRON的关键
六角硼硝酸盐(H-BN)由于其令人难以置信的电气,热和机械性能而近期引起了很多关注。其化学成分导致其化学惰性和无毒性,这使其与石墨材料不同(1)。过去,H-BN由于其摩擦学特性,即摩擦,润滑,表面相互作用。例如,这些特性已被理论上有效为航天器上的涂层,因为其在高温下保持其结构的能力(2,3)。对H-BN的分析较小,因为六角硼氮化硼纳米片(BNNS)也很感兴趣。正如已经发现石墨材料具有广泛的应用程序一样,BNN也是如此。bnns可以用作癌症药物递送的一种方法,因为它比基于石墨烯的材料更具生物相容性和毒性,但保留了许多相同的特性(4)。还发现了在量子信息中使用H-BN的动机,将量子通信科学用作“单光子发射器”(5)。我们对H-BN的特定兴趣源于其在高温下用作紫外光探测器的理论上的使用(6)。
有机太阳能电池(OSCS)由于可及性,可持续性,透明度,良好的灵活性,无毒性和较低的准备成本而享有巨大的市场和公众关注。然而,现在,受体材料的选择是限制OSC发展的关键因素。不断提高稳定性并提高功率转换效率(PCE),以提高性能,高性能受体材料是启用OSC的重要组成部分。来自Fullerenes及其衍生物和非富勒烯,我们总结了有关OSC的高性能受体材料的最新研究进度,然后引入了非熟勒烯的合成方法。还讨论了提高有机太阳能电池性能以及非富勒烯受体(NFA)在不同OSC上的广泛应用的最新策略。此外,OSC在改善其绩效方面面临的挑战和未来发展的前景还揭示了设计下一代高性能OSC的新想法。