上下文:空中客车防御与空间(D&S)正在寻找卫星的替代性,更可持续的化学推进系统。我们对使用替代推进剂(例如水,一氧化二氮,过氧化氢和二硝基铵(ADN))的推进剂特别感兴趣。此外,我们非常有兴趣寻找和探索法国解决方案,以便获得法国航天局CNES主动行动的支持。这项称为Comet的倡议旨在支持和推广为太空技术开发创新解决方案的法国公司。与技术初创公司的合作对于应对这一技术挑战至关重要,并确保成功开发和实施卫星的替代推进剂推进器。挑战介绍卫星上的推进系统使用的化学推进剂可能会对环境造成负面影响。根据特定的欧洲立法 - 对化学品的注册,评估,授权和限制(覆盖范围)的规定,空中客车D&S将来需要为其卫星推进器部署无毒的推进剂。总体而言,D&S正在寻求初创企业或可以使用符合监管要求的绿色推进剂提供推进器的公司的创新解决方案。技术/解决方案要求
摘要。有机薄膜晶体管是经典电子设备的替代候选物,这是因为有机半导体的载体迁移率超过0.1厘米2 /vs。本文的目的是基于经典特征方法提供某些有机薄膜晶体管的电气表征。硅在绝缘子(SOI)晶状体上的经典特征是伪MOS晶体管。因此,本文在一开始就提出了在Or-Ganic绝缘子上制造有机半导体的主要技术步骤,该隔热器仍然是SOI结构。制造的有机结构得到了纳米技术的帮助,并使用了无毒的前体,为绿色有机电子设备打开了新的方向。测量实验电流 - 电压静态特性。转移特性的微微调查表明,与模量中的栅极电压增加了漏极电流。因此,P型有机层正在积累。通过电气表征,提取了一些设备参数:掺杂浓度约为8×10 13 cm -3,有机纤维中的孔迁移率为0.2cm 2 /vs和6×10 10 10 E /CM 2的全局界面电荷。
!尤其建议在需要非常快速固化的高速环氧芯片键合系统中使用。!建议JEDEC III级和II,用于塑料IC包装。!NASA已批准并且是无毒的,与USP VI类生物相容性标准相关。!能够在300°C至400°C的范围内抵抗TC电线键合温度。!易用性;通过分配,丝网印刷,模具戳面或手工申请。!特别适合高功率设备和高电流。高功率LED。 ! 光电包装材料:LED,LCD和光纤组件。 典型属性:(仅用作为指南,而不是用作规范。 不能保证以下数据。 不同的批次,条件和应用产生不同的结果;治愈状况:150°C/1小时; *表示批次接受测试)高功率LED。!光电包装材料:LED,LCD和光纤组件。典型属性:(仅用作为指南,而不是用作规范。不能保证以下数据。不同的批次,条件和应用产生不同的结果;治愈状况:150°C/1小时; *表示批次接受测试)
癌症化学治疗剂杀死迅速分裂的细胞,其中包括免疫系统的细胞。由此产生的中性粒细胞减少使患者感染,这延迟了治疗,是发病率和死亡率的主要原因。为解决这个问题,我们分离了几种抑制细菌DNA修复的化合物,仅它们是无毒的,但是与DNA损害抗癌药物结合使用,它们可以防止细菌生长。通过筛选抗癌化合物顺铂的筛选中的FDA批准的药物库来鉴定这些化合物。使用一系列分类测试,将筛选减少为少数药物,这些药物已被测试,这些药物针对细菌核核切除DNA修复(NER)进行了特异性活性。出现了五种化合物,其中三种具有承诺的抗菌特性,包括细胞渗透率,以及在多药耐药性临床上相关e中阻断复制的能力。大肠杆菌菌株。这项研究表明,靶向NER可以通过与靶向DNA修复的辅助疗法进行癌症化学疗法,为癌症患者的感染提供新的治疗方法。
对可持续能源开发的需求显着增加了对可再生资源的兴趣。太阳能是一种突出的可再生能源,可提供“无限”的无排放能量。在许多半导体材料中,硅具有将近70年的发育历史,用于光伏目的。基于Si-Wafer的PV技术约占2020年总产量的95%(参考文献1)由于几个原因:硅是地壳中第二大元素;硅的带隙在最佳区域内(1.1 - 1.4 eV),用于有效的太阳能转换;它是稳定且无毒的,硅半导体技术已经建立得很好。当前的晶硅(C-SI)太阳能电池效率记录为26.7%。2但是,最大可实现的功率转换效率(PCE)限制为29.43%(参考3)通过硅的间接带隙在1.12 eV和非放射性螺旋螺旋体重组 - c-SI光伏电池的主要固有损耗机制。C-SI太阳能电池开发的另一个瓶颈是材料成本,约占太阳能电池板成本的50%。4,由于硅的间接带隙,使用单次通量吸收获得的光电流很低,除非厚度超过许多微米。因此,
利什曼原虫(Leishmania)是一种众所周知的单细胞寄生虫,是一种使人衰弱的载体疾病的病因,其致命的内脏(VL)和粘膜皮肤(MCL)形式到自我修复皮肤表现(CL)。由于疾病的流行和全球传播的变化,迫切需要保护性疫苗和候选药物(PAZ,2024年)。然而,对真正的寄生虫托管相互作用的深刻理解中的失败阻碍了保护性疫苗或有效治疗的发展。Seyed等。已经讨论了疫苗接种失败的一些根本原因以及在小鼠模型中已经鉴定出的保护的相关性以及更好地符合这些保护标准的疫苗配方,即活着的活死或非致病利什曼原虫物种和DNA疫苗。现在可以应用新技术,例如CRISPR-CAS9(Sharma等,2021)和新一代无抗生素的质粒(Alonso等,2023),可用于解决与这些疫苗平台相关的内置缺陷。基本上,针对利什曼尼亚或其他相关巨噬细胞寄生虫的保护性疫苗,例如“伴有免疫力”的克鲁兹锥虫瘤,这意味着“持久,低级感染”(Peters and Sacks,2009年,2009年; Peters等,2009; Peters等,2014; Seeed and seeed and rafati,Rafati,20221)。Cai等。 已经证明了实验性活疫苗与在表达Cruzi抗原锥虫瘤的重组无毒的利什曼原虫(DHFR-TS-)上配制的Chagas疾病的有效性。 Almeida Machado等。Cai等。已经证明了实验性活疫苗与在表达Cruzi抗原锥虫瘤的重组无毒的利什曼原虫(DHFR-TS-)上配制的Chagas疾病的有效性。Almeida Machado等。Almeida Machado等。该研究的结果值得进一步调查活体受累的利什曼原虫作为疫苗,以满足利什曼病和chagas的“伴随免疫力”,这是两种全球重要的感染。目前,当人类疫苗落后于落后于化学疗法时,在疾病控制中仍然起着最重要的作用。然而,对当前治疗剂的耐药性上升,敦促更换新的化学物质。尽管在高吞吐药物发现中取得了显着突破,但迫切需要鉴定有前途的新型抗利什曼尼亚化合物。已经有优势的药物重新利用,涉及确定已经批准其他适应症的现有药物的新治疗用途(Kulkarni等,2023)。该小组第一次提出
全球范围内抗生素的广泛使用导致了抗生素耐药菌株的出现,我们需要采取预防措施来阻止感染的蔓延,尤其是在医院环境中。因此,对能够抑制细菌生长或具有杀菌作用的材料的需求日益增长。本文提出了一种具有显著抗菌效果的廉价耐用的含铜锶改性磷酸盐玻璃。研究了该材料的基本物理性质,并评估了其对金黄色葡萄球菌的抗菌效果,金黄色葡萄球菌是医院环境中最常见的医疗相关感染问题。玻璃粉末表现出很强的抗菌功效,浓度仅为几毫克/毫升,足以在 24 小时内消灭整个细菌菌落。这些玻璃的大部分表面能够抑制细菌生长,并向模拟体液中释放低浓度、无毒的组成元素。根据所得结果,结果表明,所提出的玻璃不仅可用作医学领域中各种医疗设备的结构材料和/或抗菌涂层/涂料的组件,还可用于学校、健身房、公共办公室等公共场所中的高接触点物品。
染料用于各种行业,包括纺织品,化妆品,药品和食物。消费者越来越多地寻求环保和可持续的产品,这推动了对可再生生物来源的天然染料的需求。生物色,这些生物色源自植物,水果,蔬菜和微生物,在广泛的应用中,它作为安全的,无毒的替代品的流行度[7]。2.1生物色的生物色的来源可以来自广泛的生物材料,包括植物,水果,蔬菜,花,昆虫和微生物。每个源提供独特的颜色化合物,可以提取并用作天然染料。生物颜色来源的常见例子包括[18]。基于植物的染料:诸如靛蓝,姜黄,疯子和指甲花等植物中含有天然色素,可提取并用于染色纺织品和其他材料。水果和蔬菜染料:浆果,甜菜,洋葱和菠菜等水果和蔬菜含有充满活力的色素,可以在食物,化妆品和纺织品中提取和用作天然着色剂。微生物染料:某些细菌,真菌和藻类产生具有多种颜色的颜料,例如红色,黄色,绿色和蓝色。这些微生物颜料可以被培养和收获以用于染色。
光动力疗法(PDT)是一系列局部和表面癌症的临床认可的治疗方式。它利用光激发了局部在恶性肿瘤中的光敏剂,通过与内源性氧相互作用来产生细胞毒性活性氧(ROS)。由于这三个成分是单独的无毒的,因此与传统的抗癌疗法相比,治疗表现出最小的侵入性和更少的全身毒性。但是,PDT仍然存在许多阻碍其临床使用的局限性。尤其是,大多数当前使用的光敏药物的低肿瘤选择性和较差的药代动力学是有问题的,导致PDT治疗后长期光敏性。在本演讲中,我将通过应用超分子和生物方性化学来讨论我们最近的研究进步,以克服这些挑战。通过利用超分子和生物正交方法,我们旨在实现靶向肿瘤的光动力疗法。此外,我们通过实施生物正交技术有效地抑制了剩余的光敏剂后PDT处理后剩余光敏剂的光敏性。这些创新策略有可能提高PDT对癌症治疗的选择性和安全性。
对未来的网格级存储应用有吸引力。金属Zn作为AZB的理想阳极,具有最高的理论能力(5851 mAh ml -1)。它也是无毒的,不可易变的,丰富的,并且具有良好的电导率和水稳定性。[1-5]然而,循环过程中的召开金属锌阳极遭受严重的树突形成,造成了严重的问题,例如较差的可逆性,电压滞后,寄生反应增加,缩短了电池损坏造成的电池故障以及其他问题。[1,3,6]这些树突状结构,稀有的针或非平面血小板沉积物,在电极的不规则或有缺陷区域偏爱形成,在该区域中,局部电流密度最高,初始核核事件最有可能[7],并且在高电流和coscAcs cocclities和coscling cancling cancling and coscling and cancliesitions [7]。[8,9]控制和抑制树突状增长的策略围绕着操纵电力,通常是通过包含添加剂[10-15],或通过将电极设计到高面积的海绵中[16-18],[16-18]或保护表面涂料,[19]以供应,[19]以抑制构建dendrite。