摘要 - 条件变化自动编码器(CVAE)是自动驾驶轨迹预测中最广泛使用的模型之一(AD)。它将驾驶环境与其地面真理的未来之间的相互作用捕获到概率潜在空间中,并使用它来产生预测。在本文中,我们挑战了CVAE的关键组成部分。我们利用了变量自动编码器(VAE)的最新进展,即CVAE的基础,这表明采样过程的简单更改可以极大地使性能受益。我们发现,以确定性的方式从任何学习分布中绘制样本的无味抽样自然可以更适合轨迹预测,而不是潜在的随机随机抽样。我们走得更远,并提供了其他改进,包括更结构化的高斯混合物潜在空间,以及一种新颖的,可能更有表现力的方法来推断CVAE。我们通过在相互作用的预测数据集上评估模型的广泛适用性,超过了最新的状态,以及在Celeba数据集上的图像建模任务,优于基线Vanilla cvae。代码可在以下网址获得:https://github.com/boschresearch/cuae-prediction。
摘要:本文建立了一项准确且可靠的研究,用于估计锂离子电池的充电状态(SOC)。准确的状态空间模型用于确定电池非线性模型的参数。非洲秃鹰优化器(AVOA)用于解决识别电池参数以准确估算SOC的问题。一种混合方法由具有自适应无知的卡尔曼过滤器(AUKF)的库仑计数法(CCM)组成,以估计电池的SOC。在不同的温度下,对电池进行了四种方法,在包括负载和电池褪色之间有所不同。数值模拟应用于2.6 AHR松下锂离子电池,以证明混合方法对电荷估计的有效性。与现有的混合方法相比,建议的方法非常准确。与其他策略相比,所提出的混合方法实现了不同方法的最小误差。