hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
液滴撞击动力学一直是液滴研究的重点和热点,深入挖掘液滴撞击动力学机理有利于自上而下指导和优化材料设计。随着高速成像技术的发展和创新[13],液滴撞击的瞬态流动可以在微观时间尺度上被清晰地记录下来。单个液滴在不同表面的撞击得到了更广泛的研究。Richard等人认为液滴撞击光滑超疏水表面的接触时间与撞击速度无关,而与液滴半径的3/2次方成正比。[14]对于具有圆对称扩散和反冲的液滴撞击,存在一个接触时间的理论极限( / / 2.2 0 3 t R τ ρ σ = ≥ ∗,[15]其中,ρ是液体的密度,R 0是液滴半径,σ是其表面张力,t是固液接触时间)。为了突破这一极限,科学家通过设计和修改超疏水材料的表面结构,强化和精确控制单个液滴的反弹行为,如减少4倍接触时间的煎饼反弹[16]和7300 r min −1 的旋转反弹[17]。虽然这些研究已经被广泛应用于解决喷墨打印[18]、微流体[19]和喷雾[20]的问题,但较少受到关注的多液滴模型在自然界、日常生活和工程中更为常见和适用(例如,冻雨对电网的灾难性影响)。多液滴模型可分为连续液滴[21]、液滴列车[22]、同时液滴[23]和液滴喷雾[24]等。越接近真实情况,越复杂,研究难度越大。[25]作为该领域的先驱,Fujimoto等人[26]和Schwarzmann等人[27]在多液滴模型中[28]进行了系统研究。采用闪光照相法和数值模拟相结合的方法,研究了液滴直径和撞击速度对液滴撞击固体的影响。[26,27] Sanjay等人用撞击油滴从超疏水表面提起静止的油滴,观察到了随着韦伯数(ρσ=02WeDv,其中D0为液滴直径,v为撞击速度)和质心偏移而产生的六种结果,其中四种结果不是聚结而是反弹。[28] Damak等人实验研究了液滴连续撞击超疏水表面的最大膨胀直径和回缩速率,并建立了通用模型来描述它们。[29]由于多体问题的复杂性和相互作用,大多数学者主要使用数值模拟
• AAV 是一种小型(4.7 Kb)、单链、非致病性 DNA 病毒 • 可传导分裂细胞和非分裂细胞 • 单次给药后可进行长期传导 • 不同的 AAV 对不同物种的各种组织和器官表现出不同的趋向性
微流体液滴中的细菌生长与生物技术、微生物生态学以及了解小群体中的随机种群动态有关。然而,自动测量液滴内的绝对细菌数量已被证明具有挑战性,迫使人们使用替代测量方法来测量种群大小。在这里,我们介绍了一种微流体设备和成像协议,可以对数千个液滴进行高分辨率成像,这样单个细菌就可以停留在焦平面上,并且可以自动计数。使用这种方法,我们跟踪了液滴中数百个重复大肠杆菌种群的随机生长。我们发现,在早期,生长轨迹的统计数据符合 Bellman-Harris 模型的预测,其中没有分裂时间的继承。我们的方法应该可以进一步测试随机生长动力学模型,并有助于更广泛地应用基于液滴的细菌培养。
此预印版的版权持有人本版本发布于2021年5月23日。 https://doi.org/10.1101/2021.05.21.21257575 doi:medrxiv preprint
管理概念:首先,控制和封闭的水吸收和凝结成纳米级毛孔;其次,滴结合。为了研究两者,陶瓷介孔薄膜是有趣的模型系统,其制造[4]和功能性[5]在过去25年中已深入研究。[6]最近对此类膜或分离层的水操作进行了深入研究。[7]但是,与平面和结构化表面相比,在中孔中控制润湿性以及水吸收,凝结和落水的可能性较少得多,并且所研究的情况较低。近年来,关于表面润湿性的主要兴趣是超级恐惧症,超级恐惧症或非染色表面的发展。[8]所使用的方法通常受到天然发生的表面的启发,例如莲花叶,投手植物或雾虫,并且始终基于在微观和纳米尺度上与相应疏水表面化学的表面结构的组合,[8b,9]或与疏水性润滑剂相应地包含在一个粒子中。[10]一个挑战是在切换响应函数组后,润湿性的变化足够大。[9b]通过更改表面上的滴度和接触线的接触角,这对于诸如降落合并之类的应用至关重要,例如,探索可润湿性的这种变化可用于从湿度发电的背景下使用。[15]液滴的轻驱动运动也提供了控制基于液滴的过程。[11]常见应用之一是自算基底物,该基材收集凝结的液滴并将其从结构化底物中删除。[12]在大多数情况下,宏观[13]和微结构[14]表面用于增强自我清洁过程。在自我清洁或雾化过程中,在结构化表面上的滴相结合是速率控制过程之一。[16]使用轻驱动的滴水结合,将允许在收集水或基本研究(如未受干扰的(光诱导的)滴水结合)的过程中使用无接触式的落聚结。可以通过利用可切换极性的官能团或设计微级或纳米级结构来改变刺激性基团在刺激影响时改变。[17]经常使用的刺激是轻的,因为它可以从外部和逐渐调节。一个非常有趣的分子,对光的反应是螺旋形。正如Klajn等人所审查的那样,Spiropyran是许多
尽管铝铝元素对中级服务温度应用的好处是构思良好的,并且在过去的四十年中进行了重大的研发活动,但由于与熔融,加工,扩展和成本相关的障碍,它们一直是发展材料。有效的航空发动机和大量降低风险示威的要求要求添加了伽马钛铝制的途径。当前最具吸引力的当前应用是用于替代常规铸造镍超合金的高压涡轮机叶片(LPTB)。本文概述了最近的进步,生产性挑战和机遇。将描述伽马(γ)TIAL LPTB从实验室示范到批量生产商用喷气发动机的生产插入的成功旅程。合作和综合产品开发被确定为快速成熟和在航空航天应用中实施的最关键需求。将说明一个集成的计算材料工程建模框架和工具集,该框架将在美国空军金属合作金属可负担性计划项目之间开发,将说明行业,政府和学术界之间的项目。基于模型的材料和处理以实现所需绩效目标的优化将得到强调。
图2用于循环肿瘤细胞(CTC)基于液体活检的基于液滴的微流体。(a)使用交叉芯片进行CTC隔离的实验设置。根据CC的条款通过许可证复制。67版权所有2019,Ribeiro -Samy等。67(b)单个细胞水平上点突变分析的流动。经许可复制。68版权2021,Elsevier。 (c)方案说明显示了基于声学液滴定位技术的多功能酶 - 响应性GNP芯片,用于捕获和释放单个CTC的需求。 经许可复制。 69版权所有2019,美国化学学会。 (d)数字WGS平台的设计和操作。 根据CC的条款复制了NC许可证。 70版权所有2019,Ruan等。 70(e)数字 - rna -seq的示意图。 经许可复制。 77版权2020,美国化学学会。 (f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。 根据PANS许可条款复制。 80版权所有2018,Dhar等。 80(g)基于虚拟液滴的SCPS平台的总体工作原理。 经许可复制。 81版权2020,Elsevier。 (H)基于配对芯片的单个细胞免疫测定的工作原理。 经许可复制。 85版权2022,美国化学学会。 根据CC的条款复制了NC许可证。68版权2021,Elsevier。(c)方案说明显示了基于声学液滴定位技术的多功能酶 - 响应性GNP芯片,用于捕获和释放单个CTC的需求。经许可复制。69版权所有2019,美国化学学会。 (d)数字WGS平台的设计和操作。 根据CC的条款复制了NC许可证。 70版权所有2019,Ruan等。 70(e)数字 - rna -seq的示意图。 经许可复制。 77版权2020,美国化学学会。 (f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。 根据PANS许可条款复制。 80版权所有2018,Dhar等。 80(g)基于虚拟液滴的SCPS平台的总体工作原理。 经许可复制。 81版权2020,Elsevier。 (H)基于配对芯片的单个细胞免疫测定的工作原理。 经许可复制。 85版权2022,美国化学学会。 根据CC的条款复制了NC许可证。69版权所有2019,美国化学学会。(d)数字WGS平台的设计和操作。根据CC的条款复制了NC许可证。70版权所有2019,Ruan等。70(e)数字 - rna -seq的示意图。经许可复制。77版权2020,美国化学学会。(f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。根据PANS许可条款复制。80版权所有2018,Dhar等。80(g)基于虚拟液滴的SCPS平台的总体工作原理。经许可复制。81版权2020,Elsevier。(H)基于配对芯片的单个细胞免疫测定的工作原理。经许可复制。85版权2022,美国化学学会。根据CC的条款复制了NC许可证。(i)使用MA芯片从患者液体活检中分离出代谢活性细胞的实验工作流程。87版权2020,Rivello等。87(j)使用滴剂 - 需求喷墨打印技术和MALDI MS的开放空间平台中基于代谢的捕获和分析肿瘤细胞的插图。经许可复制。88版权2021,美国化学学会。
越来越多的证据表明,细胞可以通过产生具有明确定义的介观性能的无膜室来调节时间和空间的生化功能。该控制的基础基础的一种重要机制是由编码多价相互作用的联想无序蛋白驱动的简单共凝作。受这些观察结果的启发,基于对响应式合成聚合物的简单共凝聚的可编程液滴,这些聚合物模仿了生物无序蛋白的“贴纸和间隔者”结构。zwitterionic聚合物,并形成液滴,这些液滴明显地排除了大多数分子。从该参考材料开始,Zwitterionic聚合物中的不同函数组可以从添加添加,以编码越来越多的不同分子间相互作用。这种策略允许独立控制液滴的多个新兴特性,例如刺激反应性,极性,选择性吸收客户分子,融合时间和混杂性。通过利用这种高的可编程性,重现了细胞隔室的模型,并产生能够限制空间中不同分子而没有物理屏障的液滴。此外,这些生物分子分类器也被证明能够定位,分离和使靶分子在复杂的混合物中,在生物序列化和诊断方面开放了吸引力的应用。