摘要目的:本研究探讨了尼日利亚公共服务中人工智能实施的现状,以及利用人工智能改善治理和服务交付的潜在好处、挑战和战略步骤。方法:研究设计是定性的。数据是通过二次数据收集收集的,其中查阅了与人工智能相关的学术文章、书籍和报告的全面文献综述。本研究采用主题研究方法来阐明与治理和公共服务中的人工智能相关的潜在问题、信念和经验。该研究还以内容分析为基础。结果:研究结果表明,人工智能在尼日利亚公共服务中的应用仍处于早期阶段,在电子政务、医疗保健、银行业、房地产业务和执法/安全机构等领域取得了有希望的发展。尼日利亚政府需要在基础设施建设和人力资本发展方面投入大量资金,这反过来将弥补尼日利亚技术进步中对人工智能的无知而导致的技能差距、基础设施不足和失误。局限性:本研究通过确定影响人工智能采用和实施的主要障碍,考察了人工智能在尼日利亚公共服务和治理中的现状。该研究提出了将人工智能应用到尼日利亚公共服务和治理中的进步建议。贡献:本研究全面了解了如何在尼日利亚独特的环境中采用人工智能。结果:本研究未获得任何机构或组织的资助。关键词:人工智能 (AI)、公共服务、治理、效率、生产力引用方式:Nwosu, CC, Obalum, DC, & Ananti, MO (2024)。尼日利亚公共服务和治理中的人工智能。治理与问责研究杂志,4(2),109-120。1. 简介人工智能 (AI) 正日益成为全球各个领域的变革力量,其在公共服务和治理中的应用在尼日利亚引起了广泛关注,尼日利亚是一个人口快速增长、社会经济挑战复杂的国家。将人工智能融入公共服务和治理,有可能解决诸如效率低下、腐败和服务交付差距等关键问题。人工智能技术可以增强决策过程,改善公共资源管理,并为政府机构面临的挑战提供创新解决方案。自动化日常行政任务,以增强复杂的数据分析和预测建模。人工智能提供
警告和预防措施在接受ENHERTU治疗的患者中可能发生严重的,威胁生命或致命的间质性肺疾病(包括肺炎)的肺炎 /肺炎严重,威胁生命或致命的间质性肺疾病(ILD)。在中度肾脏障碍患者中观察到1级和2级ILD/肺炎的发病率更高。建议患者立即报告咳嗽,呼吸困难,发烧和/或任何新的或恶化的呼吸道症状。监测患者的症状和症状。迅速调查ILD的证据。通过射线照相成像评估可疑ILD的患者。考虑与肺科医生进行咨询。对于无症状的ILD/肺炎(1级),中断ENHERTU,直到分配到0级,然后如果在发病之日起≤28天内解决,请保持剂量。如果从发病之日起> 28天内解决,请降低剂量一级。怀疑ILD/肺炎(例如,≥0.5mg/kg/day presnisolone或同等学历),请考虑皮质类固醇治疗。有症状的ILD/肺炎(2级或更高),永久停止ENHERTU。怀疑ILD/肺炎(例如,≥1mg/kg/kg/day泼尼松龙或同等含量)立即开始全身性皮质类固醇治疗,并继续至少14天,然后逐渐逐渐锥度至少4周。
使用所需的适当设计设计新型的生物学序列是生物科学中的重大挑战,因为较大的搜索空间超大。传统的设计程序通常涉及多轮昂贵的湿实验室评估。为了减少对昂贵的湿实验实验的需求,使用机器学习方法来帮助设计双学序列。然而,具有已知特性的双学序列的有限可用性阻碍了机器学习模型的训练,从而极大地限制了它们的适用性和性能。为了填补这一空白,我们提出了Erlbioseq,这是一种用于生物序列设计的进化增强学习算法。erlbioseq杠杆可以在没有先验知识的情况下学习学习的能力,以及进化算法的潜力,以增强生物序列较大的搜索空间中强化学习的探索。另外,为了提高生物序列设计的效率,我们在生物序列设计过程中删除了序列筛选的预测因子,该过程既包含了局部和全局序列信息。我们在三种主要类型的生物序列设计任务上评估了提出的方法,包括DNA,RNA和蛋白质的设计。结果表明,与现有的最新方法相比,所提出的方法可以取得显着改进。