驱动机制包括气动/流体动力压力、24 电润湿 (EW)、14,21,25 - 27 介电泳 (DEP)、19,28 - 31 等。其中,DEP 方法利用电场,由于其体积小、易于制造和静态液体流动(即无需连续供应液体)等独特优点,有利于芯片实验室集成。它还能够快速响应(约 1 毫秒)并具有焦距的宽可调性(例如,从负到无穷大再到正)。32,33 此外,电驱动液体透镜通常具有高可靠性和长寿命,因为它们不需要机械运动部件。在已报道的可调液体透镜中,它们中的大多数操纵界面的整体曲率并保持球面形状。8,34因此,球面像差变得不可避免,导致成像质量差。在平面液体透镜中,周边光线和近轴光线的焦距差异会导致纵向球面像差 (LSA)。在传统的大型光学系统中,像差由多透镜系统补偿。但在微流控芯片中,很难精确控制多个单独的透镜。因此,操纵局部曲率是实现无像差系统的可行方法。已经提出了各种机制来实现平面外非球面光流控透镜。35 一种简单直接的方法是使用预成型膜 36 – 38 或非圆形孔径 39 来调节液体透镜的非球面性。其中,静电力的使用已被证明
缩写:α-SMA,α-平滑肌肌动蛋白;ALP,碱性磷酸酶;ALT,丙氨酸氨基转移酶;ASBT,顶端钠依赖性胆汁酸转运蛋白;ASBTi,ASBT 抑制剂;ATCC,美国典型培养物保藏中心;AUC inf,从给药时间到最后可测量浓度的 AUC 并外推至无穷大;BAs,胆汁酸;BDL,胆管结扎;C4,7α-羟基-4-胆甾烯-3-酮;CA,胆酸;CDCA,鹅去氧胆酸;CK7,细胞角蛋白-7;CMC,羧甲基纤维素;Cyp7a1,细胞色素 P450 家族 7 亚家族 A 成员 1;d,天;DCA,脱氧胆酸;DEGs,差异表达基因;GCDCA,甘氨鹅去氧胆酸; GO,基因本体;H&E,苏木精-伊红;IC50,半数最大抑制浓度;LCA,石胆酸;LC-MS/MS,液相色谱串联质谱法;MCA,鼠胆酸;MCP-1,单核细胞趋化蛋白-1;MDR3,多药耐药蛋白3;基质金属蛋白酶7 (MMP-7),基质金属蛋白酶7;NRC,正常大鼠胆管细胞;NTCP,Na+-牛磺胆酸共转运多肽;OST α /OST β,有机溶质转运蛋白α/β;QWBA,定量全身放射自显影;RNAseq,RNA测序;RT-qPCR,定量实时PCR;SAD,单次递增剂量;t 1/2,终末半衰期;UDCA,熊去氧胆酸;WT,野生型。
缩写:α-SMA,α-平滑肌肌动蛋白;ALP,碱性磷酸酶;ALT,丙氨酸氨基转移酶;ASBT,顶端钠依赖性胆汁酸转运蛋白;ASBTi,ASBT 抑制剂;ATCC,美国典型培养物保藏中心;AUC inf,从给药时间到最后可测量浓度的 AUC 并外推至无穷大;BAs,胆汁酸;BDL,胆管结扎;C4,7α-羟基-4-胆甾烯-3-酮;CA,胆酸;CDCA,鹅去氧胆酸;CK7,细胞角蛋白-7;CMC,羧甲基纤维素;Cyp7a1,细胞色素 P450 家族 7 亚家族 A 成员 1;d,天;DCA,脱氧胆酸;DEGs,差异表达基因;GCDCA,甘氨鹅去氧胆酸; GO,基因本体;H&E,苏木精-伊红;IC50,半数最大抑制浓度;LCA,石胆酸;LC-MS/MS,液相色谱串联质谱法;MCA,鼠胆酸;MCP-1,单核细胞趋化蛋白-1;MDR3,多药耐药蛋白3;基质金属蛋白酶7 (MMP-7),基质金属蛋白酶7;NRC,正常大鼠胆管细胞;NTCP,Na+-牛磺胆酸共转运多肽;OST α /OST β,有机溶质转运蛋白α/β;QWBA,定量全身放射自显影;RNAseq,RNA测序;RT-qPCR,定量实时PCR;SAD,单次递增剂量;t 1/2,终末半衰期;UDCA,熊去氧胆酸;WT,野生型。
现今随着高通量测序技术的飞速发展,微生物群落分析受到越来越多的关注。观测数据具有以下典型特征:高维、成分复杂(处于单纯形状态),甚至由于种类过于丰富而呈现尖峰性和高度偏斜性,这使得传统的相关性分析无法研究微生物种类之间的共现和共排斥关系。在本文中,我们解决了该类数据的协方差估计难题。假设基协方差矩阵位于一类公认的稀疏协方差矩阵中,我们采用文献中称为中心对数比协方差矩阵的代理矩阵,由于维数趋向于无穷大,因此它与真实的基协方差矩阵几乎无法区分。我们为中心对数比协方差矩阵构建了一个均值中位数 (MOM) 估计量,并提出了一种可适应各个条目变化的阈值处理程序。通过施加一个比文献中的亚高斯条件弱得多的有限四阶矩条件,我们推导出谱范数下的最佳收敛速度。此外,我们还为支持恢复提供了理论保证。MOM 估计量的自适应阈值处理程序易于实现,并且在存在异常值或重尾时具有稳健性。进行了彻底的模拟研究,以显示所提出的程序优于一些最先进的方法。最后,我们应用所提出的方法来分析人类肠道中的微生物组数据集。用于实现该方法的 R 脚本可在 https://github.com/heyongstat/RCEC 获得。
,马萨诸塞州沃尔瑟姆,2021年7月14日 - Excelitas Technologies Corp.,全球技术领导者提供了创新的,定制的光子解决方案,通过引入新的高性能HR Digaron-SW 138毫米镜头和重新设计的Rodenstock Photogress Photogress和访问式网站,扩展了其Rodenstock®PhotoOptics品牌。 更新的Rodenstock网站提供了更多的产品和技术数据,产品目标比较和数据表,用于完整的精确设计,德国制造的Rodenstock产品组合,包括新的高分辨率HR Digaron-SW 138毫米镜头。 适用于具有最大可用传感器(36x56毫米和40x54毫米)的可调节技术摄像机,HR Digaron-SW 138 mm提供了一个浮动元件组,该组在旋转聚焦环时自动调整。 这确保了从无穷大到对应于1:5图像量表(β'= -0.2)的宽距离范围的出色清晰度,其变形可忽略不计(几乎始终低于1‰),并且完全抑制了色差。 HR Digaron-SW 138毫米镜头还提供了足够的间隙,用于平行移位,以校正透视图或根据Scheimpflug规则进行摇摆和倾斜 - 在整个焦点范围内,非常大的110毫米图像圆可以充分利用。 即使在宏极限下,较长的焦距也为工作距离提供了舒适的工作距离。 “我们很高兴地向Rodenstock系列高性能镜头介绍了最新的补充,并将其作为我们简化的Rodenstock网站上的最新产品。” Rodenstock HR Digaron-SW 138毫米镜头F/6.5提供了一个集成的光圈止动物。,马萨诸塞州沃尔瑟姆,2021年7月14日 - Excelitas Technologies Corp.,全球技术领导者提供了创新的,定制的光子解决方案,通过引入新的高性能HR Digaron-SW 138毫米镜头和重新设计的Rodenstock Photogress Photogress和访问式网站,扩展了其Rodenstock®PhotoOptics品牌。更新的Rodenstock网站提供了更多的产品和技术数据,产品目标比较和数据表,用于完整的精确设计,德国制造的Rodenstock产品组合,包括新的高分辨率HR Digaron-SW 138毫米镜头。适用于具有最大可用传感器(36x56毫米和40x54毫米)的可调节技术摄像机,HR Digaron-SW 138 mm提供了一个浮动元件组,该组在旋转聚焦环时自动调整。这确保了从无穷大到对应于1:5图像量表(β'= -0.2)的宽距离范围的出色清晰度,其变形可忽略不计(几乎始终低于1‰),并且完全抑制了色差。HR Digaron-SW 138毫米镜头还提供了足够的间隙,用于平行移位,以校正透视图或根据Scheimpflug规则进行摇摆和倾斜 - 在整个焦点范围内,非常大的110毫米图像圆可以充分利用。即使在宏极限下,较长的焦距也为工作距离提供了舒适的工作距离。“我们很高兴地向Rodenstock系列高性能镜头介绍了最新的补充,并将其作为我们简化的Rodenstock网站上的最新产品。” Rodenstock HR Digaron-SW 138毫米镜头F/6.5提供了一个集成的光圈止动物。“ Excelitas流行的Rodenstock HR Digaron数字镜头满足了现代数字背部的最高质量需求,并确认了Rodenstock Photo Optics作为专业数码相机高端镜头制造商的领先地位。”带有孔径的镜头没有快门,因此适用于所有具有集成快门的相机系统以及具有全局快门的数字背部。镜头并不像往常一样在快门后面的镜头板上固定在相机上,而是带有相机制造商提供的特殊适配器。有关Excelitas及其Rodenstock摄影镜头和配件的更多信息,请访问https://www.rodenstock-photo.com/。关于Excelitas Technologies ExcelitasTechnologies®Corp.是一家领先的工业技术制造商,致力于提供创新的,市场驱动的光子解决方案,以满足OEM客户的照明,光学,optronic和检测需求。在生物医学,科学,安全,安全,消费品,半导体,工业制造,国防和航空航天部门提供大量应用,Excelitas致力于使我们的客户在其最终市场中取得成功。我们的团队由7,000名专业人士组成
理论介绍;有限状态机(FSM):FSM 介绍、FSM 示例、正则语言上的操作、非确定性 FSM 介绍、非确定性 FSM 的形式定义、确定性和非确定性 FSM 的等价性;正则语言:正则操作的闭包、正则表达式、正则表达式与正则语言的等价性、正则语言的抽水引理、正则语言总结;上下文无关语法和语言(CFG 和 CFL):CFG 和 CFL 介绍、CFG 示例、CFL 的种类、CFL 的事实;上下文相关语言:乔姆斯基范式、乔姆斯基层次结构和上下文相关语言、CFL 的抽水引理;下推自动机(PDA):PDA 介绍、CFG 和 PDA 的等价性、从 CFG 和 PDA 的等价性得出结论;图灵机 (TM):TM 简介、TM 示例、TM 定义和相关语言类、Church-Turing 论题、TM 编程技术、多带 TM、TM 中的不确定性、TM 作为问题求解器、枚举器;可判定性:可判定性和可判定问题、对于 DFA 的更多可判定问题、有关 CFL 的问题、通用 TM、无穷大 - 可数和不可数、不可图灵识别的语言、停机问题的不可判定性、不可图灵识别的语言、可归约性 - 一种证明不可判定性的技术、停机问题 - 通过归约证明、可计算函数、TM 的等价性、将一种语言归约成另一种语言、后对应问题、PCP 的不可判定性、线性边界自动机;递归:打印自身的程序、编写自身描述的 TM、递归定理、递归定理的结果、不动点定理;逻辑:一阶谓词逻辑 - 概述、真值(含义和证明)、真实陈述和可证明陈述、哥德尔不完备定理;复杂性:时间复杂度和大 O 符号、计算算法的运行时间、使用不同计算模型的时间复杂度、时间复杂度类 P 和 NP、NP 的定义和多项式可验证性、NP 完备性、SAT 是 NP 完备的证明、空间复杂度类
b'one 在某种意义上用 O \xe2\x88\x9a \xf0\x9d\x91\xa1 步量子行走代替经典随机游走的 \xf0\x9d\x91\xa1 步。需要注意的是,量子快进只能以非常小的成功概率产生最终状态。然而,在我们的应用中,它以概率 e \xce\xa9 ( 1 ) 成功。这通过一个富有洞察力的论点表明,该论点根据经典随机游走来解释量子快进的成功概率。也就是说,它对应于经典随机游走从一个随机的未标记顶点开始,在 \xf0\x9d\x91\xa1 步后访问一个标记顶点,但在 \xf0\x9d\x91\xa1 个额外步骤后返回到未标记顶点的概率。我们表明,通过调整游走的插值参数,可以将该概率调整为 e \xce\xa9 ( 1 )。在第 2 节中描述了一些准备工作之后,我们在第 3 节中讨论了算法 1 和主要结果,并在第 4 节中提供了分析的细节。在第 5 节中,我们表明 HT + 和 HT 之间的差距确实可能非常大。我们在 \xf0\x9d\x91\x81 \xc3\x97 \xf0\x9d\x91\x81 网格上构造标记元素的排列,其中 HT + = \xce\xa9 ( \xf0\x9d\x91\x81 2 ) 但 HT = O( \xf0\x9d\x91\x93 ( \xf0\x9d\x91\x81 )),其中 \xf0\x9d\x91\x93 任意缓慢地增长到无穷大。这表明当有多个标记元素时,Krovi 等人的算法可能严重不理想。原因是他们的算法实际上解决了一个更难的问题:它从限制在标记顶点的平稳分布中采样(在网格的情况下为均匀分布)。因此,当从该分布中采样比仅仅找到一些标记元素困难得多时,他们的算法可能会很慢。在第 6 节中,我们介绍了第二种更简单的新算法,我们推测 2 可以在 O \xe2\x88\x9a' 时间内找到一个标记元素
为了立即发布2023年7月25日的夜空,自2010年以来,我们被遗忘的自然基础设施是德克萨斯州希尔国家联盟董事会成员比尔·尼曼(Bill Neiman),我们倾向于将自然世界视为理所当然,直到有一天我们注意到它已经消失。德克萨斯州中部是一个很大的地方,曾经充满了敞开的天空,无限的野花,黑暗但灿烂的星空之夜。在山地的大多数地方,您仍然可以在晴朗的夜晚看到银河系。连接我们对宇宙的集体观点是自然界中最宝贵,令人振奋的礼物之一。我们有能力凝视着无穷大,这是我们在更大的方案中的真正小小所需的提醒。看到无限也有助于我们反思自己的实际规模以及我们可以创造的大混乱。对于这种普遍的创造观点来说,消失了,这太容易了。作为德克萨斯人,我们有义务负责照顾和保留这种经常被遗忘但重要的自然基础设施。本月初,德克萨斯山乡村保护网络发布了山乡村土地,水,天空和自然基础设施计划,该计划聚焦于自然基础设施在何处以及如何为山地国家及其社区的自然资源提供价值。但是,十多年前,网络合作伙伴山乡村联盟(HCA)帮助促进了希尔乡村范围内的首次保存我们夜空的努力,这是这项星层基础设施的重要一步。在135个路灯上进行了识别和改装,并使用更新的,节能的完整截止屏蔽LED。在当时的金布尔县法官安德鲁·默尔(Andrew Murr)的领导下,在2011年末通过了一项决议,支持了在西部地区保持1,251平方英里的夜空的努力。当年早些时候,Murr法官与几位HCA董事会成员合作,与Pedernales Electric Coomerative(PEC-美国最大的电力库)合作,还通过通过类似的决议来领导,涵盖其广泛的德克萨斯州中部服务区域。通过更新的,节能的全面截止屏蔽LED部署了一种协作合作伙伴关系,以自愿屏蔽或替换所有不需要的夜灯。独特的合作伙伴关系在金布尔县PEC服务区域内开展了一年,而土地所有者则无需支付任何费用。在成功的县级计划之后,HCA启用了一项独立的倡议,与American Electric Power(AEP)(AEP),这是一家位于原始Llano河源头的西部小镇的服务提供商。
无论坍缩物体的质量、电荷和角动量是多少,坍缩的最终状态仅由物体的质量、电荷和角动量来表征。由于黑洞会向渐近观察者隐藏经典信息,所以这仍然是可以接受的。然而,它在半经典背景下的影响却令人担忧,并引起了所谓的信息丢失悖论。[4] 首次研究了经典黑洞背景中量子场的散射。结果表明,在 I − 处制备的初始真空状态将在黑洞几何中演化为未来零无穷大 I + 处的热状态。因此,存在非幺正演化和信息丢失。我们可以在坍缩过程的背景下想象这一点,该过程提供经典背景和在 I − 处在真空中制备的量子态。 I + 处的外态是热态,这假设意味着黑洞正在发射热辐射,这会导致其质量、角动量等减少,并最终导致其完全蒸发。因此,作为坍缩和随后蒸发的最终状态,人们在 I + 处发现黑洞奇点和热辐射。有关坍缩物质的信息丢失了。无毛发猜想在这里的作用是,热态仅由稳态黑洞的非平凡毛发来表征。因此,一种可能的解决办法可能是如 [ 5 ] 中所建议的,黑洞上存在更多的毛发。众所周知,黑洞的质量、角动量和电荷是与规范对称性相关的守恒电荷,当存在边界时,规范对称性就会变成真正的对称性。因此,人们可以通过搜索大于度量等距群的对称性群来寻找毛发。零无穷处渐近平坦时空的例子 [ 6 – 8 ]、渐近局部反德西特时空的例子 [ 9 ],以及对近“视界”对称性的探索 [ 10 – 12 ] 告诉我们,情况确实如此。[ 5 ] 中的提议完全源于零无穷处渐近平坦时空的经验,探索了黑洞视界的对称性。对于 I + ( I − ),对称群(定义为保持度量上的衰减条件的微分同胚)变为无限维,即所谓的 BMS + ( BMS − ),它是超平移的无限维阿贝尔群与 Lorentz 群(或其推广,即 Witt 代数的两个副本 [ 13 ] 或球面上的光滑微分同胚代数 [ 14 , 15 ])的半直积。尽管黑洞视界与 I + 或 I − 相似,但由于零生成器的非亲和性,尤其是在非极值情况下,该群可能无法实现为对称性。然而,超平移的李群理想却是保持基本视界结构的对称性。超平移黑洞可能有两种含义。它可能是近视界超平移 [ 5 ],也可能是作用于全局黑洞解的 I + 和 I − 处的渐近超平移 [ 16 , 17 ]。这两个概念是否是同一个概念还远未可知,正是因为近视界超平移生成器在本体中的扩展可能与 I − 处的超平移生成器不匹配。在这里,我们将
利益冲突C. Gutierrez报告持有Genetex股票。C. de Angelis报告了Roche,Eli Lilly,Gsk,Novartis,Pfizer,Astrazeneca的个人费用(作为顾问和/或发言局);和从诺华给该机构的研究赠款。H. Nitta是Roche的雇员。M. Kapadia是Roche的雇员,并报告了Roche Stock。A. Forero-Torres是Seagen的雇员。I. E. Krop报告在Bristol Myers Squibb,Daiichi Sankyo,Macrogenics,Genentech/Roche,Seagen,Seagen,Astrazeneca的顾问委员会上报告;诺华和默克的数据监测委员会;从Genentech/Roche,Pfizer,Macrogenics研究机构的资助。R. Nanda报告在阿斯利康,超越,富士,吉利德,吉利德,无穷大,iteos Therapeutics,Merck,Obi Pharma,Obi Pharma,Oncosec,Oncosec,Seagen,Seagen;以及来自Arvinas,Astrazeneca,Celgene,Corcept Therapeutics,Genentech/Roche,Gilead/Immunomedics,Merck,Obi Pharma,Obi Pharma,Oncosec,Oncosec,pfizer,pfizer,seagen,seagen,seagen,suegen,sun pharma,taiho的研究资金。M. P. Goetz是Erivan K. Haub家庭癌症研究教授,以纪念Richard F. Emslander,M.D。并报告了从研究到实践,临床教育联盟,Medscape的CME活动的个人费用;作为小组成员的个人费用,进行了全面健康会议的小组讨论;担任Curio Science的主持人的个人费用;从Arc Therapeutics,Astrazeneca,Biovica,Biotheranotics,Blueprint药物,Eagle Pharmaceuticals,Lilly,Novartis,Pfizer,Sanofi Genzyme,Sermonix向Mayo诊所咨询费用;以及从辉瑞(Pfizer),讲道者(Sermonix)向梅奥诊所(Mayo Clinic)进行研究资助。J.S.J.S.J. R. Nangia报告报告了Paxman Coolers Ltd. B. Weigelt报告在本研究范围之外重新培养治疗剂的研究资金。Reis-Filho报告收到高盛,贝恩资本,Repare Therapeutics,Paige.ai,Saga Diagnostics和个人的个人/咨询费;科学咨询委员会的成员:VolitionRX,Repare Therapeutics,Paige.ai和personis; Grupo Oncoclinicas董事会成员; Roche Tissue Diagnostics,Daiichi Sankyo,Merck和Astrazeneca的科学咨询委员会的临时成员; Paige.ai中的股票期权;以及在本研究范围之外重新培养治疗剂的库存。A. Prat报告从辉瑞,诺华,罗氏,MSD肿瘤学,莉莉,Daiichi Sankyo,Amgen,Amgen,Guardant Health获得酬金; Amgen,Roche,Novartis,Pfizer,Bristol-Myers Squibb,Boehringer,Puma Biotechnology,Oncolytics Biotech,Daiichi Sankyo,Abbvie,Astrazeneca,Astrazeneca,NanoString Technologies(对机构)咨询; Roche,Novartis,Incyte,Puma Biotechnology向机构进行研究;揭示基因组学的股票和其他所有权权益;在诺华(直系亲属)的工作;专利PCT/EP2016/080056(HER2作为缺乏细胞毒性疗法的双重HER2封锁的反应指标),WO/2018/096191(基于PAM50的化学内分泌评分(CES),基于PAM50的乳腺癌受体,具有阳性激素受体,具有即时的阳性激素受体,具有复发性及其复发剂的阳性风险)和HERS2DXDXDXDXDXDXDXDXDXDX。 Daiichi Sankyo的旅行和住宿费用;以及与Oncolyticts和Pseptomyc S.L.的其他关系C. K. Osborne报告了持有Genetex股票并参与阿斯利康咨询委员会的参与。R. Schiff收到/已从阿斯利康,葛兰素史克,PUMA Biotechnology Inc和Gilead Sciences(向机构)那里获得了研究资金; Eli Lilly的临时咨询委员会成员;过去的咨询/咨询委员会成员;沃尔特·克鲁沃(Wolters Kluwer)/uptodate(通过机构)的特许权使用费。M.辉瑞的研究资金。J. Veeraraghavan,C。Gutierrez,J。S。Reis-Filho,S。G。Hilsenbeck,A。Prat,A。Prat,C。K。Osborne,R。Schiff,R。Schiff,M。F。Rimawi在未决的专利申请中也是#PCT/US21/70543(由乳房癌症治疗的方法)和预测的方法,并在培训中进行了预测和预测。所有其余的作者都没有宣布利益冲突