摘要:目的:历史文献研究表明,糖尿病在印度已得到广泛认可和理解。草药长期以来一直用于治疗多种疾病。大自然提供了大量对所有生物都有用的药用植物。虽然许多植物的基本优点早已被认可,但许多其他植物仍有待充分研究。因此,有必要研究它们的用途并进行药物学和药理学研究,以确定它们的治疗特性。事实上,糖尿病正在成为一个全球性问题。因此,本研究的目的是开辟新的途径,以改善 Caesalpinia bonduc 的药用用途,以治疗特定的糖尿病。方法:本研究的目的是评估 Caesalpinia Bonduc 种子对 STZ 诱发的糖尿病患者的抗糖尿病作用。结果:发现 Caesalpinia Bonduc 种子提取物的体重和血糖水平明显低于标准抗糖尿病药物(二甲双胍),并且相当。结论:在本研究中,白化 Wistar 大鼠被用作测试对象,以评估 Caesalpinia bonduc 的甲醇种子提取物的抗糖尿病活性。 1. 简介 糖尿病是一种代谢紊乱,其特征是血糖水平持续升高,是世界范围内的一个重要健康问题。它通常由胰岛素分泌不足或胰岛素敏感性不足引起。由于糖尿病发病率迅速增加和相关问题,人们对其进行了广泛的研究1。
埃塞俄比亚向印度出口棉花、宝石和咖啡 1. 背景 埃塞俄比亚农业发达,油籽、豆类和咖啡产量巨大。认识到加强出口机会的潜力,本研究旨在评估埃塞俄比亚向印度出口这些商品的现状、潜力和挑战。印度驻亚的斯亚贝巴大使馆请求咨询公司表达对油籽、豆类、棉花、宝石和咖啡生产和出口机会进行市场研究的兴趣。 2. 目标 本研究的主要目标是:
油菜籽在发育过程中含有叶绿素,使其呈现绿色。随着种子的成熟,它们会呈现出黑色、红褐色到黄色等颜色。黑色和红褐色种子的种皮会积累色素,而黄籽品种的种皮透明,可以露出胚的颜色。研究表明,黄籽油菜籽比黑籽品种休眠期短、发芽更简单、含油量更高,因此培育黄籽油菜籽是提高油分含量的有效方法(Yang et al.,2021)。芥菜和油菜黄籽品种的鉴别相对简单,因为纯黄色表型在遗传上是稳定的(Li et al.,2012;Chen et al.,2015)。然而,由于种皮颜色变异复杂,包括黄色中夹杂黑色斑点、斑块或棕色环等杂色,油菜种皮一直未能获得稳定的纯黄色后代,且分离后代的种皮颜色呈现连续变异(刘,1992;Auger等,2010;Qu等,2013),因此准确、高效地测定油菜种皮颜色仍是一项关键且具有挑战性的任务。许多研究涉及油菜籽颜色的鉴别(Li等,2001;Somers等,2001;Zhang等,2006;Baetzel等,2003;Tańska等,2005;Li等,2012;Liu等,2005;Ye等,2018)。例如,Li等(2001)通过目视观察来评估甘蓝型油菜的黄籽程度,这种方法简单但过于依赖观察者,导致识别可能不准确。Somers等(2001)利用光反射来评估黄籽颜色等级,通过测量反射值并计算籽粒颜色指数或光反射值。该方法虽然较为客观,但仅能捕捉亮度等单维颜色数据,忽略了原始材料的丰富信息。为了解决这一限制,许多学者致力于通过 RGB 颜色系统进行数字图像分析( Zhang et al.,2006 ; Baetzel et al.,2003 ; Ta ńska et al.,2005 ; Li et al.,2012 ; Liu et al.,2005 ; Ye et al.,2018 )。然而,油菜籽表皮颜色复杂且相似,精准识别颜色具有挑战性,现有的技术缺乏可靠性和标准化。因此,准确、有效地测量黄籽油菜的颜色仍然至关重要。化学计量学和计算机技术的最新进展导致了近红外光谱技术(NIRS)的发展,这是一种结合物体图像和光谱数据的技术。 NIRS 以其速度快、无损和高效而闻名,被广泛用于农产品的快速、无损分析。多项研究已经证明了它的实用性(Guo 等人,2019年;布等人,2023;梁等人,2023;刘等人,2021;佩蒂斯科等人,2010;森等人,2018;刘等人,2022;张等人,2020;魏等人,2020;张等人,2018;江等,2017;李等人,2022;江等,2018;他等人,2022)。例如,郭等人。 (2019) 使用 NIRS 成像系统 (380 – 1,000 nm) 来准确量化掺假大米,而 Bu 等人。 (2023) 将高光谱成像与卷积神经网络相结合,建立了高粱品种识别的智能模型,准确率超越了现有模型。该技术也已应用于油菜生长诊断。例如,刘等人 (2021) 开发了一种基于高光谱技术的检测算法来预测甘蓝型油菜中的油酸含量。Petisco 等人 (2010) 研究了甘蓝型油菜的可见光和近红外光谱。
甘蓝纳普斯的摘要商业化。l(油籽)餐正在越来越关注。植酸(PA)是植物中磷的主要来源,但由于人类对基本矿物质吸收的不利影响,对包括人类在内的单胃动物被认为是抗营养。未消化的PA会导致富营养化,这可能威胁着水生生命。pa在油料强奸的成熟种子中占2-5%,并通过涉及多种酶的复杂途径合成。隐性性状的多倍体繁殖多倍体具有挑战性,因为基因功能由几个旁系同源物编码。基因冗余通常需要淘汰几个基因副本以研究其潜在效果。因此,我们采用了CRISPR-Cas9诱变来淘汰BNITPK的三个功能旁系同源物。我们获得了低pa突变体,而在低芥酸菜籽级春季品种海丁中,游离磷的增加。这些突变体可以标志着菜籽繁殖的重要里程碑,蛋白质价值增加,对油含量没有不利影响。
种子是可持续农业最基本、最关键的投入。在印度,农业是经济的支柱,种子行业在确保该国 14 亿人的粮食和营养安全方面发挥着至关重要的作用。所有其他投入的响应在很大程度上取决于用于种植的种子和种植材料的质量。据估计,仅优质种子对总产量的直接贡献就约为 15-20%,具体取决于作物,如果有效管理其他投入,这一比例可进一步提高到 45%。印度东部和东北部的种子状况反映了独特的区域挑战和主要作物(如水稻、玉米、油籽和蔬菜)的资源分配。阿萨姆邦、西孟加拉邦和奥里萨邦是印度东部的主要稻米产地,而东北部各邦则专注于稻米和玉米,尽管小规模种植油籽和豆类也很普遍。由于农业气候条件良好、政府支持以及对高价值作物的日益重视,印度东部和东北部的园艺业取得了长足发展。该地区非常适合种植各种园艺作物,包括芒果、菠萝、香蕉、菠萝蜜和橙子等水果,以及黑胡椒、姜黄和小豆蔻等香料、药用植物、茶叶、椰子和竹子。近年来,在政府旨在提高种子质量和供应量的举措的支持下,印度东北部的田间和园艺作物种子分销量逐渐增加。数据显示,印度约 17% 的水稻种子需求来自该地区。此外,国家油籽和油棕使命越来越多地支持豆类和油籽,以提高自给自足能力。东部和东北地区受益于更广泛地推广高产品种和认证种子,以提高整体生产弹性。
4.C. 焚化和浪费的开放燃烧1。 (afolu)在农场/果园上燃烧农业废物等的排放。 作物残留物(例如谷物,豌豆,豆类,豆类,甜菜,油籽强奸等。 ),木材,修剪,斜线,叶子,塑料和其他一般废物(未运输异地),应包括在Afolu中,而不是浪费。 1。 注意:AGR的定义。 需要进一步讨论废物燃烧4.C.焚化和浪费的开放燃烧1。(afolu)在农场/果园上燃烧农业废物等的排放。作物残留物(例如谷物,豌豆,豆类,豆类,甜菜,油籽强奸等。),木材,修剪,斜线,叶子,塑料和其他一般废物(未运输异地),应包括在Afolu中,而不是浪费。1。注意:AGR的定义。需要进一步讨论废物燃烧
营养供应 能量 肉鸡需要能量来生长、维持身体和其他身体活动。玉米和小麦等碳水化合物来源以及各种脂肪或油是家禽饲料中的主要能量来源。饮食中的能量水平以代谢能 (ME) 的兆焦耳 (MJ/kg) 或千卡 (kcal/kg) 表示,因为这代表了肉鸡可获得的能量。能量来自碳水化合物、脂肪和蛋白质。肉鸡能量需求 ME Kcal/kg 肉鸡幼雏饲料 3000 肉鸡生长饲料 3100 肉鸡育肥饲料 3200 碳水化合物饲料 碳水化合物:谷物及其副产品 - 谷物:玉米、小麦、燕麦、小米、乔瓦尔、大麦、大米、油籽等 副产品 - 米糠、精米、麦麸、糖蜜等 富含脂肪的饲料 脂肪和油:任何油籽、大豆油、棕榈油、饲料中的脂肪等
种子油可用作食用油,也越来越多地用于工业用途。尽管高油酸种子油更适合工业用途,但大多数种子油富含多不饱和脂肪酸 (PUFA),而油酸等单不饱和脂肪酸 (MUFA) 含量较低。亚麻荠油是一种新兴的油籽作物,种子含油量高,且能抵抗环境压力,其含有 60% 的 PUFA 和 30% 的 MUFA。六倍体亚麻荠携带三种 FAD2 同源物,编码脂肪酸去饱和酶 2 (FAD2),负责从油酸合成亚油酸。在本研究中,为了增加亚麻荠籽油中的 MUFA 含量,我们通过 CRISPR-Cas9 介导的基因编辑生成了 CsFAD2 敲除植物,使用包含 DsRed 作为选择标记的 pRedU6fad2EcCas9 载体、用于驱动覆盖三个 CsFAD2 同源物共同区域的单个向导 RNA (sgRNA) 的 U6 启动子以及用于驱动 Cas9 表达的卵细胞特异性启动子。我们使用来自转化亚麻荠叶片的基因组 DNA 通过 PCR 分析了 CsFAD2 同源物特异性序列。三对 FAD2 同源物的敲除导致矮小的丛生表型,但大大提高了种子中的 MUFA 水平(提高了 80%)。然而,具有两对 CsFAD2 同源物的转化子被敲除,但另一对野生型杂合子显示正常生长,种子 MUFA 产量增加了 60%。这些结果为通过基因组编辑影响多倍体作物生长的基因代谢工程提供了基础。
