单元 -I 无线通信系统简介:移动无线电通信的发展,无线通信系统的示例 - 寻呼系统、无绳电话系统、蜂窝电话系统、常见无线通信系统的比较、蜂窝无线电和个人通信的趋势。现代无线通信系统:第二代 (2G) 蜂窝网络、第三代 (3G) 无线网络、无线本地环路 (WLL) 和 LMDS、无线局域网 (WLAN)、蓝牙和个人局域网 (PAN)。第二单元:移动无线电传播:大规模路径损耗:无线电波传播简介、自由空间传播模型、功率与电场的关系、三种基本传播机制、反射-电介质反射、布儒斯特角、完美导体反射、地面反射(双射线)模型、衍射-菲涅尔区几何、刀刃衍射模型、多重刀刃衍射、散射、室外传播模型-Longley Ryce 模型、Okumura 模型、Hata 模型、Hata 模型的 PCS 扩展、Walfisch 和 Bertoni 模型、宽带 PCS 微蜂窝模型、室内传播模型-分区损耗(同一楼层)、楼层间分区损耗、对数距离路径损耗模型、爱立信多断点模型、衰减因子模型、信号穿透建筑物、射线追踪和特定站点建模。第三单元:移动无线电传播:小规模衰落和多径小规模多径传播 - 影响小规模衰落的因素、多普勒频移、多径信道的脉冲响应模型 - 带宽与接收功率之间的关系、小规模多径测量 - 直接射频脉冲系统、扩频滑动相关器信道探测、频域信道探测、移动多径参数
应用。 [3] 然而,尽管取得了这些进展,这些执行器要实现大输出力和高重量标准化工作能力(以下称为“工作能力”)仍然具有挑战性。 [4] 这是因为组成材料较软且体积有限,难以储存和释放高机械能。 [2d,5] 目前,大多数微型软执行器的工作能力相对较低,在 10 –3 至 10 2 J kg − 1 范围内(图 S1,支持信息),[3b,6] 这使得它们无法用于潜在的医疗器械、操作和其他需要高工作能力的应用。 [7] 此外,现有磁控软执行器的最大输出力约为 60 µN。然而,许多医疗程序,如支架植入术 [8] 要求装置的输出力超过 1 N,这约为磁控软执行器最大输出力的 10软气动执行器同时提供了高机械性能和柔顺性,使其在强力操控中得到了广泛的应用。[9] 具体而言,尽管杨氏模量较小(约为 10 kPa),但这些执行器可以提供高工作能力(9 J g-1),比大多数已报道的执行器的性能高出约 10 1 –10 3 倍。尽管形状记忆合金具有类似的工作能力,但它是执行器的 10 6 倍
摘要 - 近年来,与基于标准头皮的脑电图相比,近年来,脑脑电脑术(EEG)记录了质量相似的信号,并且已经报道了客观听力阈值估计的临床应用。现有设备仍然缺乏重要的效果。实际上,大多数可用解决方案都是基于湿电极,需要连接到外部采集平台,或者不提供车载处理功能。在这里,我们克服了所有这些局限性,并基于干电极电极呈现一个耳EEG系统,其中包括直接在耳芽中的所有采集,处理和连接电子设备。听筒配备了一个超低功率模拟前端,用于模数转换,低功率MEMS麦克风,低功率惯性测量单元以及ARM Cortex-M4基于MART Cortex-M4的微控制器启用板上的船上处理和蓝牙低能能连接。系统可以直接流式传输RAW EEG数据或直接进行数据处理。我们通过分析其检测大脑对外部听觉刺激的响应的能力来测试该设备,分别实现4和1.3 MW的数据流或船上处理。后者允许在PR44锌空气电池上进行600小时的操作。据我们所知,这是执行机载处理的第一个无线且完全独立的耳朵系统,所有这些都嵌入了单个耳塞中。较长的电池寿命也适用于连续监控方案。临床相关性 - 拟议的EAR-EEG系统可以用于诊断任务,例如客观听力阈值 - 旧估计,在临床环境之外,从而使其作为护理解决方案。
越来越多的可再生能源的使用会导致间歇性发电的更高份额。在本文中,我们开发了Flexies,这是一种新的开源电力系统优化模型,以确定可再生电力发电技术和灵活性技术的成本效率部署。我们在2030年,2040年和2050年的中欧(瑞士,奥地利,法国,德国和意大利)的电力系统案例研究中应用弹性。案例研究表明,由多个天然气存储组成的低碳发电,电池和电力汽油在2050年的成本效益 - 而不是在燃气轮机中燃烧天然气。这样的脱级奖励电源系统可能会提前成本效益,假设碳价格足够高。此外,我们发现,由于电力储存的需求较低,陆上风被优先于高度挥发性太阳能。互连可实现均匀发电技术的更高股份(ON - 和近海风,透明,生物量浪费),并减少对太阳能和存储的需求。因此,与隔离国家的情况相比,互连将总发电量降低了8.2%,系统成本最多将高达16.3%,碳当量排放量最多增加9.0%。最后,我们观察到脱碳化电力系统需要从运营到投资阶段的成本转变,并且总的正常化成本可能高于电力市场价格。因此,可能需要新的机制来激励脱碳化功率系统。
创建无线磨刀机器人在人体的软组织内导航以进行医疗应用是一个挑战,因为船上推进和小规模的供电能力有限。在这里,我们提出了大约100个永久磁铁阵列的基于远程驱动的Millirobot系统,该系统使Cyly-Drical Magnity Millirobot能够通过连续渗透在软组织中导航。通过在软组织内部7 t/m的速度上创建一个强烈的磁力陷阱,即使没有主动控制,机器人也会吸引到阵列的中心。通过将阵列与运动阶段和荧光镜面X射线成像系统相结合,磁性机器人在离体猪脑中遵循具有极端弯曲的次数弯曲精度的复杂路径。该系统可以使未来的无线医疗机器人可以提供药物;进行活检,热疗和烧伤;并在身体组织中用小切口刺激神经元。
无线驱动和远程控制的活跃软材料已引起了大量的研究注意,因为与传统的智能材料相比,它们在各种各样的领域中具有潜在的潜在应用,其性能有所改善。[1-5]这些合成伴侣对环境刺激的反应并表现出模仿或与自然界观察到的行为或现象相匹配的能力。[6-8]在这些智能材料中,机械刺激响应材料从环境输入中收获能量,例如光线,[9-11]热量,[12,13]溶剂,[14,15]和物理领域和[16-18],并将其转换为机械能量,无需通过机械形状,无需通过板上的功率来源。这些无线材料可以完成各种功能,例如运动[19-21]以及物体操纵和运输[22-24]作为执行器和传感器。在迄今为止报道的大量活跃智能材料中,由于它们的独特特征和独特的优点,液晶弹性体(LCE)和磁反应弹性体(MRE)最近与其他人脱颖而出。lces表现出大量的菌株(高达400%)和高度工作,以响应多种环境刺激,例如温度[25-27]光,[11,28]和电场。[17,18,29] LCES内部元素的预定对齐(由导演n描述)启用了已在软执行器和生物启发的设备中使用的复杂的3D可逆形状。这些局部菌株共同起作用,以实现指定的形状 - 修复行为,这通常是平面外弯曲的。[6,11,30]外部刺激会根据LCES的当地董事场诱导收缩和拉伸菌株的对齐中的订单参数。另一方面,MRE由柔软的弹性体(SE)矩阵组成,其嵌入式硬磁性微或纳米果(MMPS或MNP)组成。外部磁场在嵌入的MMP或MNP上产生局部力和扭矩。分离的扭矩会导致身体变形和MRE材料的净旋转,而颗粒所经历的力会融合到净力,从而置换MRE或变形。[31]磁性致动具有远距离,健壮和快速致动的优势,并且瞬间的能力
摘要无线电力传输(WPT)技术的最新进展为消费者和行业提供了更方便,高效和智能的电动汽车(EV)和智能设备(SDS)(例如智能手机,无人机,机器人和物联网)的收费。WPT已被采用,以免手工频繁地进出充电。仅凭重型电池就无法解决所有移动物体的饥饿能量问题,最终应该为此充电。在本教程中,首先简要介绍了包括电感功率传递(IPT)在内的WPT的基本原理,并解释了主要的WPT理论,例如耦合线圈模型,Gyrator电路模型,磁性镜像模型和一般统一的动态词曲模型。电动汽车的WPT进展得到了广泛的解释,它们分类为固定的电动汽车(SCEV)和道路驱动电动汽车(RPEV)。SCEV由于便利性和安全性而变得越来越吸引人。此外,由于电动汽车市场份额和可再生能源的市场份额迅速增加,电动汽车和网格的互操作性变得非常重要。电动汽车不再是简单的能源消费者,而是电网的能源提供者。WPT是一种有前途的解决方案,可以在停放时自动将电动汽车与网格连接。这是SCEV作为可互操作系统的灵活手段的潜在贡献。详细解决了线圈设计,大容忍度充电,补偿电路和异物检测(FOD)问题。也总结了全球技术发展的最新进展。rpevs没有严重的电池问题,例如大,重,昂贵且昂贵的电池组以及较长的充电时间,因为它们在移动时直接从道路上获得电源。通过创新的半导体开关,更好的线圈设计,巷道构造技术和更高的操作频率的优点,已提高了WPTSS的功率转移能力,效率,电磁场(EMF),气隙,大小,重量和成本。引入了WPT的最新进展。SD的WPT中的进步被解释了,根据操作环境,它们彼此之间的不同。智能手机是WPT中最成功的应用程序,现在正在不断发展,以获得太空中的更多收费自由。由于分布式和物联网的多种性质,WPT的广泛领域非常具有挑战性。各种动力水平和耐力时间的各种无人机和机器人需要具有足够快速的充电速度,并具有位置自由度。最近的技术发展将解释。解决了WPT问题的未来,其中包括可互操作的无线电动汽车,更长的距离IPT,3D无线充电器和合成的磁场聚焦(SMF)。
简介。在此公开通知中,无线电信局(WTB)和公共安全与国土安全局(PSHSB)(局)(局)为智能运输系统(其)许可证提供了指导,以寻求从专用的短期通信(DSRC)的牢房(DSRC)的操作到蜂窝手术到所有事物(C-v2x) - C-v2x-by everying the Everyther(c-v2xx) (5.895–5.925 GHz)5.850–5.925 GHz(5.9 GHz)频段的一部分,以及寻求首次申请基于C-V2X的实体的指导。该局还恢复了所有路边单位(RSU)许可,该许可自动在2022年7月20日自动终止,因为未能通知委员会在频段的45-megahertz(5.850-5.895 GHz)中停止其运营,并允许在47 cfr§90.3.2(B)上进行47 cfr§90.32(B)。这些规则规定从本公告发行日期起额外的90天,以确认如果他们以前没有提供必要的认证,他们及时停止了乐队下部45-Megahertz部分的所有操作。