Sundaram Vanka (CSPL) 副教授 研究兴趣:数学建模、无线系统和网络的仿真和原型设计,尤其是低功耗应用 EE (IITH) 博士。招生手册 2024 年 8 月 第 6 / 28 期
摘要 — 在下一代无线系统和网络的曙光中,大规模多输入多输出 (MIMO) 已被设想为使能技术之一。随着在 5G 及更高版本的应用中不断取得成功,大规模 MIMO 技术已显示出其优越性、可集成性和可扩展性。此外,近年来,大规模 MIMO 的几种演进特征和革命性趋势逐渐显现,有望重塑未来的 6G 无线系统和网络。具体而言,未来大规模 MIMO 系统的功能和性能将通过结合其他创新技术、架构和策略来实现和增强,例如智能全向表面 (IOS)/智能反射面 (IRS)、人工智能 (AI)、THz 通信、无蜂窝架构。此外,基于大规模 MIMO 的更多不同的垂直应用将会出现并蓬勃发展,例如无线定位和传感、车载通信、非地面通信、遥感、行星间通信。
过去十年,物理层无线通信理论及其在无线系统中的实现取得了许多进展。这本教科书对无线通信的基本原理进行了统一的看法,并以具有概率和数字通信基本背景的读者可以理解的水平解释了这些进步所依据的概念网络。涵盖的主题包括 MIMO(多输入多输出)通信、空时编码、机会通信、OFDM 和 CDMA。这些概念使用来自无线系统(如 GSM、IS-95(CDMA)、IS-856(1 × EV-DO)、Flash OFDM 和 ArrayComm SDMA 系统)的许多示例进行说明。特别强调了概念与其在系统中的实现之间的相互作用。大量的练习和图表强化了课文的内容。本书旨在用于电气和计算机工程研究生课程,也将引起执业工程师的极大兴趣。
Sundaram Vanka(CSPL)副教授研究兴趣:无线系统和网络的数学建模,模拟和原型制作,尤其是低功率应用EE(IITH)博士学位。入学手册12月2023日/1月.2024会议6/28
• 我们的内部布线网络因尝试登录网络的用户数量过多而变得不堪重负。这导致登录延迟、处理时间变慢以及课堂上技术使用受限 • 我们当前的无线系统不允许在建筑物中的某些教室内访问 • 持续支持我们当前的技术,包括但不限于使用交互式白板进行教学
IV单元车辆无线技术和网络9 0 0 9无线系统框架图和组件的概述,传输系统 - 调制/编码,接收器系统概念 - 解调/解码,无线网络,对车辆自治的应用以及应用于车辆自治,计算机网络的基础知识 - 事物网络,无线网络和无线网络和划分无线网络和divairnation and difcompants of Wieling Networking and divalsing
1 无线通信概述 1 1.1 无线通信的历史 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 无线系统和标准的演进 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 蜂窝系统. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.5 具有多跳路由的短距离无线电 . . . . . . . . . . . . . 13 1.3 无线频谱 . . . . . . . . . . . . . . . . . . 14 1.3.1 监管 . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 属性和现有分配. . . . . . . . . . . . . . . . . 17 1.4 通信标准. . . . . . . . . . . . . . . . . . . . 18 1.5 无线视觉. . . . . . . . . . . . . . . .................................................................................................................................................................................19 1.6 技术挑战....................................................................................................................................................................................................20
摘要 — 未来的无线服务必须专注于通过实现各种应用(例如扩展现实、脑机交互和医疗保健)来提高生活质量。这些应用程序具有不同的性能要求(例如,用户定义的体验质量指标、延迟和可靠性),现有的无线系统很难满足这些要求。为了满足新兴应用的多样化需求,最近提出了数字孪生的概念。数字孪生使用虚拟表示以及与安全相关的技术(例如区块链)、通信技术(例如 6G)、计算技术(例如边缘计算)和机器学习,从而实现智能应用。在本教程中,我们将全面概述无线系统的数字孪生。首先,我们概述了无线系统数字孪生的基本概念(即设计方面、高级架构和框架)。其次,为两个不同方面设计了一个全面的分类法。这些方面是无线孪生和孪生无线。对于无线孪生方面,我们考虑了孪生对象设计、原型设计、部署趋势、物理设备设计、接口设计、激励机制、孪生隔离和解耦等参数。另一方面,对于孪生无线,我们考虑了孪生对象访问方面、安全和隐私以及空中接口设计等参数。最后,介绍了开放的研究挑战和机遇以及原因和可能的解决方案。
Altair Feko 的主要应用 对于无线系统、EMC 和雷达应用,Altair Feko 提供了一套全面的解决方案,包括:• 天线设计和大型平台上已安装天线性能的分析 • 平台连接的虚拟试驾和虚拟飞行测试 • 雷达截面和散射分析 • 电磁兼容性 • 无线电和雷达覆盖和规划 • 射频干扰和频谱管理 • 辐射危害和生物电磁场景分析 • 复杂雷达罩的电磁模拟和分析