无线系统不断增长的设备和容量需求带来了对RF光谱的需求不断增长。COG-NISTILE RADIO(CR)系统是提高频谱效率的新兴概念。CR系统旨在实现其主要许可用户在Spectrum Overlay方法中未占用的RF频段的机会性使用。这种方法在信号和图像处理中尤其重要,其中大型和异质的传感器集提供了大量数据,通常会嘈杂且损坏了各种干扰来源。从方法论的角度来看,认知通知与多维和统计信号处理有关,尤其是诸如检测,估计和优化等问题。除了经典的传感,检测,监督,增强和学习方法外,还包括贝叶斯建模,马尔可夫模型,支持向量机和内核方法。它跨越了广泛的应用领域,例如军事,工业,医疗,运输和其他领域,例如误差控制,错误检测,适应性过滤,计算机视觉,管理数据,数据控制,传感器控制,数据融合,盲目和半盲源分离,稀疏分析,脑部分析,脑部计算机
请求零件,服务或托盘拾取门/门控制AGV控制电动机控制叉车控制门控制易于使用的耐用设备,可以手持或安装到单身设备上或安装到设备上,通常可以打开的按钮,以监视或控制远程设备本地LED指示,可以在纽扣中链接到其他无线电器,以置于网络电池范围内的其他无线电器,否定型电池效率a Platevation twection Ally twection twection the Patection a Plate a pectery a peel a peel and peel a peel and peel a peel and peel and peel a peel a peel and peely stick'交叉无线系统是一个具有集成I/O的射频网络,它消除了对电源的需求和控制线降低复杂性 - 机器或过程重新配置变得更加容易;非常适合进行改造的应用程序轻松部署 - 简化在现有设备上的安装,可以在远程和难以访问的位置进行部署,在这些位置实施有线解决方案将是困难,不切实际或不成本效益
军事行动区域越来越不连贯,形成了越来越难以监控的广阔监视区域。例如,观察哨的安全和部队保护面临着特殊的挑战,特别是当由于任务要求而无法重新安置时。此外,现代军事行动的城市部署地点包括建筑物和其他人造结构,它们阻挡了视线,给侦察系统带来了挑战。为了满足当代部署的需求,军方需要一个可以在所有天气条件下全天候检测、分类和定位敌对力量的传感器系统。该系统必须加强对关键地形和游牧设施的监视,以支持对停火线、非军事区、营地和其他高价值资产的监视。因此,传感器系统应能够减少操作员的工作量,同时提供更大的持久性,从而释放部队以执行其他任务。传统的基于平台的军事传感器监视系统通常体积庞大且价格昂贵,需要大量人力来操作和监控 [1]-[4]。这些无线系统能够感知周围环境中的现象,并将收集到的数据传送到基站或网关,然后通过长距离通信将信息发送到指挥和控制单元。部署要求将传感器战略性地放置在距离网关一定距离的位置,以确保
摘要 - 随着物联网(IoT)的不断扩大,对节能电路和无电池设备的使用的需求迅速增长。无电池操作,零维护和可持续性是第五代网络(5G)网络和绿色行业4.0无线系统中IoT设备的所需功能。能源收集系统,物联网设备和5G网络的整体具有潜在的影响,可以通过启用实时数据收集和分析,降低维护成本以及提高效率,从而使工业4.0,农业,食品和医疗保健等各种行业(例如工业4.0,农业,食品和医疗保健)具有潜在的影响。能源收获在设想低碳净零未来的未来并具有重要的政治重要性方面起着至关重要的作用。这项调查旨在对包括射频(RF),多源混合动力车以及使用增材制造技术在内的各种能源收集技术进行全面审查。但是,针对无电池无线传感的基于RF的能量收集方法特别重视,并为自动驾驶的低功率电子电路和物联网设备提供动力。讨论了芯片实施(SOC)实施系统的未来观点的关键设计挑战和应用。
增强现实 (AR) 是一种计算机图形技术,可在现实世界和虚拟世界之间创建无缝界面。AR 的使用迅速扩展到医疗保健、教育和娱乐等不同领域。尽管 AR 潜力巨大,但其界面控制依赖于外部操纵杆、智能手机或易受光线影响的固定摄像头系统。本文介绍了一种集成 AR 的软性可穿戴电子系统,该系统可检测受试者的手势,从而更直观、准确、直接地控制外部系统。具体来说,这种软性一体式可穿戴设备包括可扩展电极阵列和集成无线系统,用于测量肌电图,从而实时连续识别手势。系统中嵌入的先进机器学习算法能够对十种不同的类别进行分类,准确率高达 96.08%。与传统的刚性可穿戴设备相比,由于皮肤贴合性,多通道软性可穿戴系统在多次使用时可提供更高的信噪比和一致性。用于无人机控制的 AR 集成软可穿戴系统的演示抓住了平台技术的潜力,为用户提供大量人机界面机会,实现与外部硬件和软件的远程交互。
该团队的优势之一是其在移动和情境感知计算方面的工作。Matthew Chalmers 是赤道跨学科研究中心格拉斯哥分部的负责人,这是一个为期六年、耗资 1000 万英镑的项目,将移动无线系统与超媒体和 VR 系统相结合。Barry Brown 和 Ian MacColl 是赤道研究助理,他们将自己的民族方法学和交互设计技能带入了跨多种交互媒体的协作系统设计中,加深了我们对活动和交互的理解,并开发了新的活动和表征理论。与这里描述的大多数项目一样,赤道项目由英国工程和物理科学研究委员会资助。Phil Gray 和 Stephen Brewster 为移动设备构建了一个可动态重构、资源敏感的声音增强小部件工具包。Phil Gray 和 Chris Johnson 的 ParaGlide 项目与大学麻醉科合作,研究无线、移动、情境感知设备在医院的临床应用。这项工作的成果之一是紧凑且高度灵活的超媒体服务,它能够针对小型显示器定制和调整信息。Chris Johnson 和 Stephen Brewster 组织了一系列有关 HCI 和移动设备的国际研讨会。
注意:1请参阅连续行应用程序的行安装订购指令2请参阅SpectrAsync和NX可用性表。仅与ED驱动程序和80 CRI一起使用。3 Only available with Curve, Frosted Acrylic lens option 4 Dimming curves may vary dependent upon lumen output and driver option chosen Separate dimming circuits are recommended if multiple driver options are chosen 5 Not available in 347V 6 Not available with 2ft: VW, MW, LW lumen packages, 4ft: XW, VL lumen packages or 8ft: MW, VL lumen packages 7 To determine lumen output in emergency mode,将电池组的瓦数乘以2英尺固定装置的每瓦(LPW)8的固定流明(LPW)8。在4英尺和8英尺固定装置上无线和XL或UL流明包装不可用9最高环境温度,25°C 10在加拿大不可用11用于紧急电路控制负载,包括传感器和无线系统CSA,CSA CERD cSA已通过ul 924认证。请参阅接线图。不能与SpectrAsync或2ft固定装置中的Controls选项合并12个PAF选项,当选择此选项13仅使用MB或SLV完成选项可用
自由空间光学 (FSO) 系统是支持下一代无线系统及更高版本的高数据速率要求的有希望的候选系统 [1]。具体而言,与光纤链路相比,FSO 系统的部署速度更快、成本更低,同时与射频 (RF) 系统相比,能够以更低的成本和更轻的设备重量提供几 Gbps 的数据速率 [2],[3]。此外,由于 FSO 系统采用窄激光束,因此本质上是安全且无干扰的。这些特性使 FSO 系统成为卫星、无人机/气球和地面通信(特别是无线前传和回传)的有吸引力的选择 [1]–[3]。尽管 FSO 系统具有上述优势,但它们也面临着一些挑战,例如易受大气湍流影响、指向误差以及恶劣天气条件下的高衰减。过去几年,人们已经开发出适当的对策来克服这些挑战,包括多输入多输出 (MIMO) FSO 系统和混合 RF/FSO 系统 [2]。然而,这些技术无法克服发射器 (Tx) 和接收器 (Rx) 之间视线 (LoS) 链路的要求,这是 FSO 系统的一个根本性持续限制。目前,解决此问题的唯一可行方法是部署光中继节点。然而,这种中继节点价格昂贵且不方便,因为它们需要大量额外的硬件部署。另一方面,对于 RF 通信系统,智能反射面
• 神经形态计算的应用、算法和架构 • 大脑和心智的认知神经工程 • 基于深度学习的光流估计 • 使用风筝传感器测量空气质量 • 神经形态计算的混合信号设计 • 室内环境中的机器人感应 • 电力和能源的未来 • 物联网无线系统 要参与 VIP,您必须正式申请并被特定团队接受。 要申请,请登录 ForagerOne (www.drexel.edu/foragerone) 并搜索“VIP”。 这将显示标记为 VIP 项目的所有可用空缺职位。 提交申请时,请确保已将更新的简历上传到您的 ForagerOne 个人资料,并说明您为何有兴趣在所申请的团队工作。 请注意,参与 VIP 团队需要注册随附的 VIP 课程部分。每季度所需的学分数是灵活的,将根据具体情况与团队的教师导师和学生的学术顾问协商确定;但是,大多数 VIP 团队成员每季度将注册一个学分。强烈鼓励长期、持续地参与该计划(三个或三个以上的季度在一个团队工作),并且可能需要这样做才能将获得的 VIP 学分计入学位要求。所有获得职位的申请人都将获得更多信息。如果您对某个团队有任何疑问,请随时联系该团队的教师导师。有关 VIP 计划的任何问题,请通过电子邮件 cam83@drexel.edu 发送给 Chad Morris 我们希望您能花时间考虑这个引人注目的新机会。我们期待收到您的申请!
摘要:无线传感器网络在智慧农业中起着至关重要的作用,尤其是在未来的无农民农场中。本文提出了一种用于作物叶片湿度监测的新型无线通信系统 (WCS),该系统使用 nRF905 无线传输模块、STM32 控制器、数据采集板和开发的软件。进一步开发的 nRF905 无线模块用于将 LWS (叶片湿度传感器) 在田间采集的作物冠层叶片湿度数据传输到监控中心站。开发并实现了一个简单的图形用户界面,以通过 LWS 显示作物冠层湿度。在 LabVIEW2013 中对 WCS 进行了测试和验证。根据监测系统采集的数据,建立了 3 天的湿度时间序列模型。本文介绍了该系统的结构,并描述了系统在田间的性能评估。结果表明,无线系统有望为作物冠层叶片湿度监测和应用提供更高的精度,从而提高智慧农业应用的效率。关键词:无线通信系统、nRF905、叶片湿度传感器、作物状况、冠层湿度、智能农业 DOI:10.33440/j.ijpaa.20200301.68 引用:Zhu H, Li HZ, Lan Y B. 一种利用叶片湿度传感器监测作物状况的无线通信系统的开发。Int J Precis Agric Aviat,2020;3(1): 54–58。