e&ce 671-秋季2024课程描述RF技术已用于无线通信系统,生物医学传感器,量子计算机和广泛的工业应用。该课程重点介绍了微波/RF被动和主动电路的分析和设计的基本方法。将涵盖微波/RF电路的计算机辅助设计以及硬件实现的主要方面。将详细讨论无线通信系统的重要RF应用程序。课程将包括:
可植入的医疗设备被手术插入患者中,以提供增强的医疗治疗,例如连续监测或常规药物注射。现代设备具有无线通信capabil ities,并与医院的外部实体进行通信。此无线通信引入了攻击向量,以供对手利用。成功对植入医疗设备的攻击可能会产生致命的结果,因此至关重要的是将这些攻击免受远程攻击。随着连接的医疗设备的数量增加,患者安全受到危害。这些设备旨在增强患者的健康状况,而不引入任何其他风险。调查并建议将适当的异常检测算法在可植入的医疗设备上实施,这有助于早期检测潜在攻击并保护患者免受进一步的伤害。由于设备受到资源的约束,因此在计算效率上需要准确的算法。主要的研究差距是,在建议用于植入式医疗设备异常检测的机器学习模型时,以前的研究尚未考虑这些资源限制。在本文中,根据预测性能和计算效率评估了算法。所述问题很重要,因为研究领域的研究不足。随着针对小电池,效率软件和嵌入式系统的能源收集的最新技术进步,因此有更多的安全空间。
4。工程项目的成本管理5。复合材料6。浪费到能量7。物联网架构和协议部门选修课:1。高级无线和移动通信2。高级光学通信3。无线通信中选定的主题4。信息理论和编码5。高级RF和微波工程6。对分布式网络的估计7。软件定义的无线电和认知无线网络8。毫米波技术9.统计信号处理10。物联网系统设计简介11。机器学习简介
作为对更高数据速率不断增长的需求的解决方案的一部分,无线通信正朝着越来越高的频率发展,包括毫米波和太赫兹波段。与此同时,量子物理学正在试验亚光、太赫兹甚至更低波段上的量子态传输。为了预期量子计算机网络和无线网络上量子密钥分发 QKD 的发展,需要设计工具来优化异构网络,尽可能无缝地融合这两种技术。
无线通信 - H101、生物信息学 (H1) - H102、系统生物学 (H2) - H102、信息检索与提取 - H103、MCS 1-概率与统计 (H1) - H104、MCS 2-线性代数 (H2) - H104、自动机理论 (H1) - H105、数据与应用 (H2) - H105、半导体器件原理 - H202、遥感简介 - H203、信息理论 - H301、建筑基础设施结构安全 (H1) - H302、高级计算机网络 - SH2
在现代无线通信领域,想要专攻通信领域的工程师需要对电磁辐射、天线和相关传播现象的作用有基本的了解。这些论文讨论了天线在现代无线通信系统中的性能、特性、测试、测量和应用。天线是任何无线通信系统的重要组成部分,因为它可以高效地将电子信号(在射频收发器中传播)转换为电磁波(在自由空间中传播),同时将损耗降至最低。我们在没有其他选择时使用天线,例如与导弹通信或在崎岖的山区地形上,电缆价格昂贵且安装时间长。母系统的性能特征在很大程度上受到天线套件的选择、位置和设计的影响。要理解天线的概念,应该知道电磁波在自由空间中的行为。所以我简要介绍了电磁波的基础知识及其在自由空间中的传播模式。除此之外,我还介绍了天线分类(基于频率、孔径、极化和辐射模式)、其性能参数(增益、方向性、波束面积和波束效率、辐射模式、VSWR/回波损耗、极化、效率)、测量技术(室外和室内测试)及其国防应用(海军天线、空中
IHP 为研究合作伙伴和客户提供其强大的 SiGe:C BiCMOS 技术和特殊集成 RF 模块。这些技术特别适合更高 GHz 频段的应用(例如无线、宽带、雷达)。它们提供截止频率高达 500 GHz 的集成 HBT,包括互补设备。• 适用于光纤、航空航天、宽带和无线通信、雷达、数据中心、测量设备、太赫兹成像、电子健康领域的产品
Weasic Microelectronics SA 设计、开发和销售用于无线通信和无线传感器应用的高质量复杂模拟和 RF IP,帮助半导体和系统公司缩短产品设计周期。WEASIC 经过硅验证的 IP 采用最先进的 CMOS、CMOS-SOI 和 SiGe 工艺设计,可以轻松移植和定制,以服务于 5G 和回程通信收发器、mmWave 前端模块和 RADAR 传感器的开发。联系我们
Cubic 的无线车载多路综合激光交战系统 (MILES) 是我们用于模拟训练的无线解决方案的一次革命性进步。新型可仪表化 MILES 战术车辆系统 (I-MILES TVS) 目前正在为美国陆军生产,具有更好的训练保真度、无线通信和直观界面。该系统在对抗训练场景中提供 MILES 战术交战训练所需的实时伤亡评估。
分形结构是一种独特的几何形状,在自然界中的许多物体中都可以看到,例如云、海岸线、DNA、树木甚至菠萝。这种结构具有多种几何形状、自相似性和空间填充特性。由于这些特性,分形几何形状是无线通信中天线小型化的首选。许多情况都需要小型紧凑型天线,包括体内通信。在本文中,我们回顾了分形天线研究的最新趋势和进展,特别是用于体内通信的可植入天线的小型化。该综述来自从 IEEE、PubMed、Nature、MDPI、Elsevier 和 Google Scholar 等在线图书馆收集的文章。因此,我们收集了 60 多篇与分形植入式天线和体内通信相关的文章。事实上,在过去的几十年里,许多研究人员已经提出了一种具有分形几何的可植入紧凑型天线。分形几何允许在天线的较小区域内布线更长的电气长度。然而,设计分形天线仍有几个挑战,包括带宽、制造复杂性和单元间干扰。关键词:分形几何、分形天线、体内通信、无线通信、可植入天线简介