(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月12日发布。 https://doi.org/10.1101/2025.01.08.631570 doi:biorxiv preprint
Cereblon 是 CRL4-CRBN E3 泛素连接酶的组成部分,是骨髓瘤药物沙利度胺、来那度胺和泊马度胺的靶标。在发现 Cereblon 直接与沙利度胺结合后,结构研究对于了解分子胶水的作用机制至关重要。这些药物与 Cereblon 表面结合并重新利用 E3 连接酶来招募非天然底物,从而导致泛素化和降解。Cereblon 的重新利用可以通过异双功能药物或分子胶水降解剂实现。分子胶水药物的分子量低于异双功能药物,并且更广泛地依赖于稳定蛋白质-蛋白质相互作用。沙利度胺类似物作为原型分子胶水得到了非常深入的研究,已经确定了几种 Cereblon 复合物的晶体结构。除了 Cereblon-药物二元复合物外,还解决了几种底物结合的三元复合物。底物募集所需的关键“降解决定子”特征,可实现优化功效和选择性的合理设计。降解决定子存在于其他不相关的 cereblon 底物中,这些底物没有序列、折叠或功能相似性。
1 美国农业部农业研究服务处西部地区研究中心,美国加利福尼亚州奥尔巴尼,2 Takara Bio USA, Inc.,美国加利福尼亚州山景城,3 美国纽约州纽约市哥伦比亚大学医学系,4 美国纽约州纽约市哥伦比亚大学人类营养研究所,5 德国汉堡汉堡大学食品科学学院、食品化学研究所,6 美国堪萨斯州曼哈顿市美国农业部农业研究服务处谷物与动物健康研究中心硬质冬小麦品质实验室,7 美国纽约州纽约市哥伦比亚大学乳糜泻中心,8 美国纽约州瓦尔哈拉纽约医学院医学系
摘要:无标签和多光子微观镜检查可以通过在癌症等疾病中提供诊断成像和手术治疗的原位工具来改变临床组织病理学。基于多光子成像的微观内镜装置的关键是光纤,用于无失真,有效地递送超短激光脉冲到样品和有效的信号收集。在这项工作中,我们研究了新的空心核心(充气)双层抗谐振纤维(DC-ARF)作为多光子微观内镜的高性能候选者。我们将DC-ARF的纤维特性与单层抗谐振纤维(SC-ARF)和固体芯纤维(SCF)进行比较。在这项工作中,而DC-ARF和SC-ARF启用低损失(<0.2 dbm-1),接近无散的激发脉冲输送(<10%脉冲宽度<10%脉冲宽度在900 nm / 1 m纤维中的脉冲宽度增加,而没有任何诱导的非线性,则在光谱宽宽和脉冲范围内导致ESCF(ecf)在> 2000 persthing> 2000 persth>> 2000 pers persth> 2000 pers ecf ins ecf ins ecf中,> 2000 e>> 2000 ex ex>> 2000 n 00 perss ef pers pers>> 2000 e;理想的光纤内窥镜需要长几米,并且应该通过纤维进行激发和收集。因此,我们在后散射的几何形状中对内窥镜兼容的1 m和3 m长度的纤维长度进行了多光子成像,其中直接收集了信号(未散布的检测)或通过纤维(降压检测)收集信号。第二次谐波图像是从钛酸钡晶体以及生物样品(小鼠尾部)中收集的。在非划定的检测条件下,ARF在图像的信噪比方面最多优于SCF 10次。显着,仅由于DC-ARF的高数值孔径(Na)为0.45和广泛的带宽(> 1 µm),才能在脱扫描的检测构型中提供图像,以进行内窥镜检查。因此,我们在不同图像收集配置下对不同光纤的系统表征和比较,确认并确定了DC-ARF的实用性,用于基于无标签的基于无标记的多光子成像。
抽象的原始皮肤是皮革制革厂中使用的常见主要材料。作为一种有机材料,皮革有微生物损害微生物的风险。尽管制革厂过程使用多种化学物质和动作来防止其损坏,但皮革的较长储存时间可以为微生物提供重生的机会。该研究旨在通过微生物的活性引起的微观结构条件了解监测器蜥蜴皮革质量。通过细菌计数评估皮革的各种储存时间(1、2、3和4年)。根据结果,皮革中的细菌计数和氮含量显着增加(p <0.05),而皮革储存两年后的pH值和热稳定性显着下降。因此,储存时间越长,皮革质量就越低。
E3 连接酶 cereblon (CRBN) 被发现是沙利度胺及其类似物的靶标,这彻底改变了靶向蛋白质降解 (TPD) 领域。这种泛素介导的降解途径首先由二价降解剂利用。最近,低分子量分子胶降解剂 (MGD) 的出现扩大了 TPD 领域,因为 MGD 通过相同的机制运作,同时提供与小分子疗法一致的有吸引力的物理化学特性。本综述深入探讨了 MGD 的发现和发展,并以细胞周期蛋白 K 和锌指蛋白 IKZF2 为例进行了研究,重点介绍了设计原理、生物测定和治疗应用。此外,它还研究了分子胶的化学空间,并概述了推动该领域创新的合作努力。
我们通过密度函数理论计算研究了原型Mott绝缘子NIS 2的电子结构,在这些计算中,我们明确地说明了非共线性抗铁磁序,如最近在IsoelectRonic Analog Ni(S,SE,SE)2中建立的。对于金属NIS 2在高压下,我们的计算预测了Fermi表面拓扑和体积,这与最近的量子振荡研究非常吻合。但是,我们发现,即使在环境压力下,密度功能理论也错误地预测了金属基态,类似于以前的非磁性或共线性抗抗铁磁模型。通过包括Hubbard相互作用U和现场交换J,金属相被抑制,但即使是这样的扩展模型也无法描述金属到构造的相位转变的性质,并错误地描述了绝缘阶段本身。这些结果突出了更复杂的计算方法的重要性,甚至在绝缘阶段深处,远离莫特绝缘相变。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年1月27日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.01.24.634677 doi:biorxiv preprint
摘要:单量子发射器与共振光学/纳米腔之间的强耦合对理解光和物质相互作用是有益的。在这里,我们提出了放置在金属膜上的等离子体纳米annana,以实现纳米类动物中的超高电场增强功能和超小的光学模式。通过数值模拟和理论计算详细研究了单个量子点(QD)和设计结构之间的强耦合。当将单个QD插入银纳米annna的纳米含量中时,散射光谱显示出真空狂犬分裂的分裂和抗骨骼的表现非常大,可以在散射光谱中通过优化纳米坦纳的厚度来实现。我们的工作显示了在单个量子发射极限制下增强光/物质相互作用的另一种方法,这对于许多纳米量和量子应用可能很有用。
用户说明 1. 使用提供的 (4) 个螺钉和锁紧螺母、扳手和内六角扳手(也包括在内)组装托架手柄。 2. 打开离合器杆以允许齿条移动。将齿条手柄拉离工具以缩回齿条。 3. 准备胶筒,取下盖子或插头并安装静态混合喷嘴。注意:遵循胶筒制造商的完整说明来准备胶筒。 4. 将胶筒插入托架。将胶筒和胶筒喷嘴开口对齐,以便正确定位。 5. 向前推齿条手柄,将活塞与胶筒上的开口对齐。关闭离合器杆以接合离合器。 6. 将电池滑到手柄上,直至完全接合。 7. 将速度控制旋钮调节到所需流量。旋钮上最大的“气泡”符号表示全速。速度越慢,气泡越小。注意:大多数应用都要求工具全速运行。 8. 按住扳机开始分配胶筒。注意:当工具保持空转时,必须按下扳机 2 次这是工具内置的节能功能。9. 分配完毕或到达墨盒末端时,松开扳机,打开离合器,然后缩回机架。取出墨盒。