对纯化学品,石油和药物等行业中聚合膜的需求强调了优化有机分离系统的需求。这涉及提高性能,寿命和成本效率,同时解决化学和机械不稳定性。这里开发了一个模型,该模型与膜性能相关联,该模型由物种I的渗透溶质浓度(CPI)指示,与在跨膜压力(δP)或压缩应力下渗透或渗透期间的实时压缩年轻的模量(E)。较低的CPI值表示性能更好。模型集成了溶剂密度(ρI),膜(δM)的溶解度参数,溶质(ΔSO),溶剂(δSV)以及膜约束的程度(ϕ)。还认为膜肿胀(LS)和压实(LC)具有相关的泊松比(γ),为预测膜性能提供了全面的框架。关键特征是无量纲参数β,定义为LN(LS/LC),它描述了不同的操作方案(β<1,β= 1,β> 1)。此参数将膜的属性特性与机械性能联系起来。使用三个有机分离系统(a,b和c)证明了该模型的能力,该系统分别使用纳米过滤(NF)膜分别将异亮氨酸与DMF,甲醇和己烷溶液分别分离,低,中等和高E值。跨膜压力范围为0.069至5.52 MPa(10 - 800 psi),β<1。中度压实,导致中等的膜电阻和致密性,被证明是有益的。性能结果表明,系统B(中E)>系统A(低E)>系统C(高E)的趋势,与降低溶剂 - 溶质相互作用(ΔΔSOSV)和压实水平相关。CPI - β图显示了三个不同的斜率,对应于弹性变形,塑性变形和膜聚合物的致密化,从而引导
首先,关于哪些国家应为NCQG做出贡献,存在很多分歧。现有的贡献者国家反复呼吁中国,印度和海湾国家等较高的中等收入发展经济体为NCQG做出贡献。像美国和澳大利亚这样的国家认为,1992年建立的贡献者清单已过时,因为它不仅排除了大型高排放经济体,而且不包括新加坡和文莱等高收入国家。在TED中,任何发展中国家谈判的群体(包括最不发达国家(LDC))不支持扩大贡献者名单的推动。这是令人惊讶的,因为没有要求发育党的贡献,这将受益于增加贡献者名单可能导致的量子。
免责声明 本信息由美国政府机构赞助,作为工作记录而编写。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
尽管有一些经验方法可以预测表面沉降,但理论分析很少见,而且初步[1-4]。修改的经验啄式公式用于预测水丰富的沙质鹅卵石地层中的表面沉降[5]。lu等。[6]提出了一个基于表面沉降的大量观察数据的高斯函数模型,该模型可以描述表面沉降的几何形状。基于Mair的理论,Yang等。 [7]提出了一种用于在表面和地下土壤长期沉降的计算方法,而Macklin [8]使用负载因子参数来预测体积损失。 所有经验方法都有明显的局限性,它们需要所有难以获得的隧道条件。 尽管许多科学家一直在试图开发普遍的理论[9-11],但没有明确的成功,这是极其困难的。 通过多功能数值方法提供了一种替代方法[12-14],但是未知的边界条件和未知的地面特性阻止了实际应用中成功的数值分析。 大数据理论和机器学习成为一个热门话题,因为它们在大多数复杂问题上的多功能应用程序[15-19]。 尽管在预测表面结算方面取得了一些成功[20-22],但机器学习方法不是隧道过程的选择方法,因为丢失的数据使实时预测不可能。基于Mair的理论,Yang等。[7]提出了一种用于在表面和地下土壤长期沉降的计算方法,而Macklin [8]使用负载因子参数来预测体积损失。所有经验方法都有明显的局限性,它们需要所有难以获得的隧道条件。尽管许多科学家一直在试图开发普遍的理论[9-11],但没有明确的成功,这是极其困难的。通过多功能数值方法提供了一种替代方法[12-14],但是未知的边界条件和未知的地面特性阻止了实际应用中成功的数值分析。大数据理论和机器学习成为一个热门话题,因为它们在大多数复杂问题上的多功能应用程序[15-19]。尽管在预测表面结算方面取得了一些成功[20-22],但机器学习方法不是隧道过程的选择方法,因为丢失的数据使实时预测不可能。
用具有开放电路电势的化学物质量化锂离子细胞中的衰老效应是具有挑战性的。我们实施了一个基于物理学的电化学模型,以跟踪基于钛酸锂细胞的电化学阻抗反应的变化。伪二维模型的频域方程是无量纲的,并使用Levenberg-Marquardt例程估算相应的非二维参数。该模型权衡了扩散变化,电解质相内离子传导的相对贡献与固相电子传导对细胞衰老的相对贡献。固相扩散,电荷转移电阻和在固液界面处的双层电容是在粒子阻抗中的。使用来自1000多个循环的完整单元格的加速循环数据,估计程序常规跟踪无量纲参数。该模型可以在短时间内使用基于物理的模型来进行状态估算,而无需先验了解电池化学,格式或容量。©2023作者。由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。[doi:10.1149/1945-7111/acf52a]
人们对用于制造和修复薄壁结构的定向能量沉积工艺的兴趣日益浓厚,这促使人们更深入地了解该方法的基本构造块的特性:覆层形成。在本研究中,研究了通过沉积 316L 不锈钢 (SS316L) 粉末获得的覆层,其中三个不同的工艺参数是激光功率、激光移动速度和粉末质量流速。通过每个参数的宽样本范围来确保可重复性。从数据测量来看,覆层的平均硬度接近 SS316L 材料的典型 200 Hv,表明 Hall-Petch 效应占主导地位。研究还表明:(i) 激光功率是影响覆层深度的最重要因素,但对覆层厚度影响不大。(ii) 激光移动速度是影响覆层高度的主要参数。 (iii) 粉末质量流速往往会通过厚度增加来补偿深度减少,因此对包层高度没有明显影响。观察到增加激光功率是防止在零稀释下形成包层的最有效方法,零稀释是衡量打印包层与基材结合程度的指标。从 SS316L 包层组得出了无量纲分析。通过使用不同的不锈钢数据集进行验证并推断到更大的参数范围,证明该分析能够促进工艺参数的选择,以满足对包层尺寸的给定要求。由于其应用直观,该分析有可能被用作标准的预打印工具,以提高成功率,从而改善制造周转时间。