2.1 典型的太阳光谱分布显示 PV 感兴趣的区域 。.....................3 2.2 各种 PV 材料的相对光谱响应函数。.....................4 2.3 用于光伏材料评估的不同实验室灯的光谱分布。...........5 2.4 太阳光谱分布随大气质量增加的变化 M ......................6 2.5 太阳几何定义,包括法线角、天顶角、入射角和方位角 ............7 3.1 光学滤波器参数 ....................。。。。。。。。。。。。。。。。。。。。。。。。.......11 3.2 使用公式 (4) 时指示辐照度与真实辐照度变化示意图 ..........14 3.3 使用二极管阵列和扫描光栅光谱仪测量的 Spire 2 40A 的相对光谱分布与校准灯光谱的比较 ....................15 3.4 阵列光谱辐射计数据收集时序图 .........................16 3.5 带有 3 个误差线的光谱辐照度灯数据标准 ........................19 3.6 NREL 光谱辐射校准照片 ...............................2 2 3.7 NREL 光谱辐射计相隔六个月的校准文件比率 ..........2 3 3.8 汞氩灯的发射光谱显示用于波长校准的线条 .2 4 3.9 由于校准期间过量的(反射的)辐射到达输入光学器件导致白炽灯的光谱分布失真 ......................... ; .......2 5 4.1 氙源的光谱分布、ASTM E-892 全局光谱以及 CIS 和非晶硅电池的光谱响应,用于光谱失配计算 .............2 6 4.2 白炽灯源的CIS和非晶硅光谱响应和光谱辐照度曲线 ............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..29 4.3 NREL 参考电池校准测量系统框图 ...............3 2 4.4 NREL 样品光谱响应报告 ..。。。。。。。。。。。。。。。。。。。。。。。。.................3 3 4.5 用于 Sandia/NIST 校准程序的设备示意图 ...................3 4 5.1 典型的绝对腔辐射计设计 .........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4 1 5.2 使用绝对腔辐射计参考的典型日射计响应度与一天中的时间。注意响应度有 1.2% 的差异... ................................... 44 5.3 遮光-非遮光日射强度计校准信号时间序列 .......< div> 。。。。。。。。。...... div>......4 5 5.4 示意图日射强度计的分量总和校准。................. div>....4 6 5.5 ' 典型太阳辐射计响应度响应与天顶角 . < /div>................. div>.........4 7 5.6 与图相同型号太阳辐射计的响应度与天顶角的关系。5.5 ........... div>....4 8 5.7 三纬度倾斜 NREL 光伏系统太阳辐射计与四季晴空的纬度倾斜参考太阳辐射计。.........。。。。。。。。。。。。。。。。。。。。.49 5.8 与 5.7 类似,但适用于部分多云条件 .....................................50 5.9 与图 5.7 和 5.8 类似,但阴天条件除外。.........................5 1 5.10 由晴空分量总和(直射光计/漫反射)数据生成的 NREL 太阳辐射计方位角-仰角响应图 ..。。。。。。。。。。。。。。。。。。。。。。。。.......5 2 5.11 未补偿的 50 结 T 型热电偶的温度响应非线性。还显示了补偿网络的响应。.................5 3 5.12 Eppley Laboratories 温度补偿网络示意图 ...................5 4 5.13 典型的 Eppley PSP 和 Kipp 和 Zonen 温度响应数据 ................5 4 5.14 单个 Eppley PSP 日射强度计的重复温度响应结果 ............5 5 6.1 用于 NREL 标准化室外测量系统的日射强度计支架,用于 PV 模块性能测试。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..5 8 6.2 NREL 户外测试设施使用的光伏系统日射强度计安装方案示例 ..60 6.3 用于评估光伏模块能量生产能力的拟议方法流程图 ........6 1 6.4 辐射数据的月/小时平均数据报告样本 .........................6 3 6.5 NSRDB 每小时数据格式注释示例 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 4
在日本,自 2009 年起逐步引入上网电价制度后,各种运营商开始建设公用事业规模的太阳能发电厂。截至 2019 年底,太阳能发电量占日本总电源结构的比例已增加到 7%。(1)另一方面,运营商对发电厂的维护有不同的关注程度。特别是对于直流电压部分,持有执照的电气工程师负责制定维护菜单,规定应检查什么内容到何种程度。目前主流的直流电压部分的目视检查存在着重大问题,需要解决这些问题才能确保发电厂的长期稳定运行。鉴于上述背景,我们已将可以彻底监视直流电压部分的发电量的串监视系统 (SSMAP) 商业化。(2)此新系统配备了电力线通信 (PLC),可收集每个串中测量的功率数据。 PLC 收集的数据与日射强度计、温度计、光伏逆变器等设备的监测数据一起汇总到专业制造商的核心监控系统(主机系统)中并进行可视化。但是,一些负责实际发电厂维护的运行维护人员由于缺乏此类事件的专业知识,无法有效利用可视化的数值和图表来检测发电厂发生的异常事件。虽然一些主机系统具有异常数据检测/报告功能,但问题是它们使用阈值来检测异常。由于每个发电厂的运行环境不同,如果将单个阈值共同用于异常检测,则经常会发生误报和随后的警报。为了突破上述情况,我们参加了由国家电网公司发起和管理的 2017 年新能源维护规程精细化项目——电气设施维护技术精细化的评估和验证
TWC 是全球最大的气象信息服务公司,自 2016 年起成为 IBM 集团公司。我们在IBM日本公司内设立了亚太天气预报中心,气象专家全年365天、每天24小时驻守现场,通过云服务提供企业天气数据。 TWC 利用 AI 实时(每小时)收集 1 公里网格范围内长达 15 天的高精度预报数据。除了温度、降水量、风向和风速、气压等一般项目外,TWC 还通过 API 提供各种预报、当前情况和历史数据供企业使用,包括直接太阳辐射、感知温度、能见度和空气密度。