- NJIT开发了一种用于水和土壤样品中PFA(全氟烷基和多氟烷基化合物)的高速且高度敏感的检测技术。 -PFA,称为“永久化学品”,是一种在各种产品中发现的人造化合物,从食品包装材料到耐水服装,需要数千年的时间才能分解。有成千上万种不同的类型,当前的测试方法需要成本和时间,环境中的分布程度尚不清楚。 - 新技术包括一种称为造纸喷雾质谱法(PS-MS)的电离技术,该技术分析了样品材料的分子组成,并且比当前的PFAS标准测试方法高10至100倍。 -PFA被离子化并检测到,并且包含的各种PFA物种及其浓度清楚地显示到数万亿(PPT)水平。对于诸如土壤之类的复杂矩阵,使用脱盐的纸陶喷雾质谱法(DPS-MS)用于洗涤抑制PFA的离子信号的盐。这两种方法都显着提高了PFAS检测功能。 PFA的检测极限约为1 ppt,相当于20个奥林匹克大小的游泳池的一滴水。 - We directly analyzed fragments of various food packaging materials, including microwave cooking popcorn paper, instant noodle containers, and fried food and hamburger wrapping paper, and successfully detected traces of 11 types of PFAS molecules, including PFOA (perfluoroctanoic acid) and PFOS (perfluorooctanesulfonic acid), which are associated with cancer risk and suppression of the immune system, within 1 分钟。美国环境保护局(EPA)提议为全国饮用水中的六种PFA设定最大污染水平(MCLS),包括PFOA和PFO。 。- 此外,在2分钟内在局部自来水样品中检测到PFOA的痕迹。在大学的过滤春季样品中未发现PFA的痕迹。此外,使用DPS-MS从40毫克的土壤中识别出两种类型的PFA。我们还将证明空气中包含的PFA的检测能力。 - 还将进行测试,以将这些方法与NJIT BioSmart中心开发的PFA分解催化剂技术相结合。催化剂技术在3小时内分解了饮用水样品中98.7%的PFA。 - 这项研究得到了国家科学基金会(NSF)的支持。
详细信息 1. 姓名:(员工编号) 2. 出生日期: 3. 就业日期: 4. 现工作单位名称: 5. 职务: 6. 需要证明的原因: 7. 所需份数: 8. 备注:
- 芝加哥大学和Argonne国家实验室(ANL)开发了一种新技术,该技术将单晶钻石膜直接粘合到量子和电子技术中的各种材料,包括硅。 Diamond提供了无与伦比的特性,其电子技术具有宽带的带镜头,极好的热导率和介电强度,量子技术可在室温下进行出色的量子传感。但是,由于底物和生长层是同质材料,因此很难将不同材料直接积累到设备中,这需要使用大量钻石。在这项研究中,通过使用基于血浆激活的键合技术,我们通过确保钻石和载体基板的光滑表面成功地粘结了极其平坦的材料表面,准确的厚度和材料的原始材料质量。退火过程促进和加强粘结,从而使钻石膜能够承受各种纳米化过程。在钻石中,每个碳原子与其他四个碳原子之间的电子共价键形成其坚硬,耐用的内部结构。这次,通过在钻石膜的表面上创建许多悬挂的键(无伴侣的键),这是形成了对不同材料“粘合”的表面。结果,钻石膜直接粘合到诸如硅,融合二氧化硅,蓝宝石,热氧化物膜,尼贝特锂等的材料,而无需使用介体进行粘附。与厚度为数百微米的散装钻石(通常是在量子研究中使用的),而是合并了100 nm薄钻石膜,同时保持适合高级量子应用的自旋相干性。 - 这项新技术基于从1940年代开发的大型晶体管的互补金属氧化物半导体(CMOS)的进步,转至现代计算机等中使用的功能强大,精细的集成电路。 - 该技术已获得专利,现在已通过大学的波尔斯基企业家和创新中心进行商业化。这项研究得到了美国能源部(DOE)科学局(SC)的国家量子信息科学研究中心的支持,作为Q-Next中心的一部分。
锂离子电池是当今电力平台的重要组成部分。锂离子电池在所有便携式电子设备、电动和混合动力汽车以及电网规模的储能系统中都有广泛的应用。[4] 但由于电池行业需要近 50% 的可用锂资源,因此锂离子电池能否大规模生产用于电网应用尚不确定。[5f] 此外,锂离子在非质子电解质中的电导率有限以及安全性较差也可能对其大规模利用造成问题。这些缺点促使研究人员寻找替代锂离子电池的新型储能技术,其中可充电金属空气电池成为一种有前途的新型电能存储技术(图 1)。通常,金属空气电池(Li 或 Na)比锂离子电池具有更高的理论比能,这使得金属空气电池系统对混合动力和混合动力电动汽车具有吸引力和实用性。 [6] 以金属为阳极、氧为阴极活性材料的电化学电力装置具有最高的能量密度,因为后者不存储在装置内部,而是可从环境中获取。锂空气电池(LAB)的理论比能量与汽油的理论比能量相当。[5c,7] 空气阴极性能限制了电池容量,危及 LAB 技术的商业成功。首先,无论是碱性还是酸性水性电解质,在阴极反应过程中都会消耗溶剂。其次,由于孔口/开口的堵塞导致放电不完全。[8] 因此,提高 LAB 性能的可能途径之一是阴极材料结构,[9] 它可以保持活性锂离子和氧气的传输,并且可以填充大量氧还原反应(ORR)的产物而不会堵塞孔隙。在燃料电池的气体扩散电极 (GDE) 领域中,双孔材料有望提高能量容量。[10] 第三,空气阴极性能下降。空气阴极提供大部分电池能量,因此电池电压降最大。[11] 放电过程中 LiO 2 的积累产生了混合产物,充电时的高电压导致溶剂分解,同时过氧化锂也发生还原。[12] 氧溶解度和扩散速率成为影响电池能量容量的关键因素。使用氧溶解度高和氧扩散率高的电解质可提高阴极容量。[8,13]
成本 $/kWh 石墨 12.50 10.23 Li-Si 合金 2.10 0.19 Na-Sn 合金 16.10 11.50 电解质 12.50 10.13 SSE-Sep *50.00 12.06 SSE-Sep 0.28 0.09 隔膜 160.00 24.00 SSE-Cat *50.00 14.71 SSE-Cat 1.73 0.49 铝 7.41 2.09 铝 7.41 0.98 铝 7.41 2.38 铜 13.45 12.55 铜 13.45 5.90 铜 不需要 阴极 20.00 30.03 阴极 17.00 25.01 阴极 1.51 4.89 制造占总成本的 35% 制造占总成本的 25% 制造占总成本的 50% 总计 $135/kWh 总计 <$80/kWh 总计 <$40/kWh(目标)
钠 (Na) 电池之所以被选为大规模储能候选材料,很大程度上源于这样一个事实:作为地壳中第六大丰富元素和海洋中第四大丰富元素,钠是一种廉价且全球均可获取的商品。钠电池的重大研究和开发可以追溯到 50 多年前。熔融钠电池始于 20 世纪 60 年代末的钠硫 (NaS) 电池,当时它被用作汽车电气化的潜在高温电源 [1]。继 NaS 电池之后,20 世纪 70 年代出现了钠金属卤化物电池(NaMH:例如钠镍氯化物),也称为 ZEBRA 电池(沸石电池研究非洲项目,或最近的零排放电池研究活动),也是考虑到交通运输应用 [2]。钠离子电池 (NaIB) 最初是在 20 世纪 80 年代与锂离子电池 (LIB) 大致同时开发的;然而,由于充电/放电速率、循环性、能量密度和稳定电压曲线的限制,它们在历史上的竞争力不如锂电池 [3]。最近,固态钠电池 (SSSB) 已开始成为候选商业产品,尽管它们在大规模、长时间存储中的适用性目前尚未得到很好的证实 [4]。
动脉粥样硬化心血管疾病(CVD),慢性肾脏疾病(CKD),神经病和视网膜病[1]。HF和CKD已被证明是2型糖尿病(T2D)患者最常见的心脏节日,最初无心脏疾病,因为这些事件也与进一步的CVD和死亡率的风险增加有关[2]。这种高疗程的风险是慢性高血糖的结果,并因其他合并症(例如高血压,dyslipi-demia和肥胖症)而加剧。因此,需要有效且耐受良好的治疗方法,可以帮助患有T2D的患者实现并维持血糖控制,并预防心脏疾病的发作和进展。在降低葡萄糖的不同类别中,钠 - 葡萄糖共转运蛋白2型抑制剂(SGLT2I)表现出了解决这一需求的潜力。评估Sglt2i empagli ozin,canagli ozin,dapagli-flozin和Ertugli flozin的几项临床试验显示,HF的主要不良心血管事件和/或较低的风险降低了卵形疾病进度的主要不良心血管事件和/或较低的风险降低。在这篇综述中,我们旨在总结并讨论近年来关于SGLT2I治疗类别及其在心脏预防中的作用的证据。本文基于先前进行的研究,不包含对任何作者进行的人类参与者或动物的任何研究。
16. 摘要 科罗拉多州交通部多年来一直使用 MgCl 2 进行防冰和除冰。有人担心这些化学物质可能会影响汽车和卡车的各种部件。在科罗拉多大学博尔德分校材料实验室进行的这项实验研究中,选择了汽车行业的代表性金属,以比较它们在暴露于除冰盐 NaCI 和 MgCh 时的腐蚀行为。在测试过程中使用了试剂级 MgCh 和 CDOT 使用的 MgCh(含有腐蚀抑制剂)。对选定的金属采用了两种测试方法:SAE 12334(加速循环测试);和 ASTM B 117(连续喷涂测试)。SAE 12334 的测试环境提供了循环暴露,这更好地模拟了实际使用条件。尽管 CDOT 规范规定氯化镁的腐蚀性必须比氯化钠低 70%,但 SAE J2334 获得的实验结果表明,MgCl 2 对测试的裸露金属的腐蚀性比 NaCl 更强。腐蚀程度各不相同,对于某些金属只有轻微差异,而对于 SS410 则高出 13 倍。与 SAE 12334 的结果相比,ASTM B 117 的实验结果显示出不一致,尤其是对于不锈钢 SS410,NaCI 对其的腐蚀性比 MgCI 2 更强。实验还表明,在三种情况下,MgCl 2 和 NaCl 的混合物对金属的腐蚀比单一盐(MgCl 或 NaCl)略高
1996 年 1 月 1 日之后发布的报告通常可通过美国能源部 (DOE) SciTech Connect 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000(1-800-553-6847) TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ DOE 员工、DOE 承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 http://www.osti.gov/contact.html