。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月5日。 https://doi.org/10.1101/2025.02.05.636647 doi:Biorxiv Preprint
。CC-BY 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月4日发布的此版本中显示在版权所有的此版本中。 https://doi.org/10.1101/2025.01.30.635658 doi:biorxiv preprint
在本报告中,我们通过执行运动学约束模型表明,单个 IMU 加上一个挠曲传感器就足以获得精确的重建。挠曲传感器是一种 1D 传感器,可根据挠曲程度改变阻力。我们使用现成的设备构建了一个可穿戴的扑克大小的传感器原型。为了证明我们设计的有效性,我们创建了一个虚拟环境,其中玩家被僵尸包围。为了杀死僵尸,玩家必须做出不同的上肢手势来发射能量球。通过设计一组手势,我们彻底评估了我们传感器的灵敏度和稳健性。通过我们的工作,我们希望激发后续研究,研究如何利用人体的内在约束来简化传感器设计。
转弯对动物至关重要,尤其是在捕食者期间 - 猎物相互作用并避免障碍。对于飞行动物,转弯由(i)飞行轨迹或行进路径的变化以及(ii)身体取向或3D角位置组成。只有通过调节与重力相关的空气动力来实现飞行的变化。鸟类如何相对于转弯时身体方向的变化来协调空气动力的产生,这是遵守鸟类操纵飞行中使用的控制策略的关键。我们假设鸽子相对于其身体沿均匀的方向产生空气动力,需要改变身体方向以重定向这些力转动。使用详细的3D运动学和身体质量分布,我们检查了缓慢飞行的鸽子(哥伦比亚利维亚)执行90°转弯的净空气动力和身体方向。即使鸟类的身体取向差异很大,在整个转弯的整个转弯中,下冲程上平均的净空气动力在固定的方向上也保持固定的方向。在回合的早期,身体方向的变化主要重定向下冲程空气动力,影响了鸟的飞行轨迹。接下来,鸽子主要重新征收前向飞行中使用的身体方向,而不会影响其飞行轨迹。令人惊讶的是,鸽子的上风产生的空气动力力量大约是下文中产生的空气动力的50%,几乎与嗡嗡声鸟产生的相对上行力相匹配。因此,鸽子通过使用全身旋转来改变空气动力产生的方向来改变其飞行轨迹,从而实现低速的情况。