摘要 — 可再生能源系统继续成为能源行业增长最快的领域之一。本文重点介绍储能技术在直流 (dc) 电弧条件下的表现。由于可再生能源系统的快速普及以及缺乏正式的直流等效计算指南(如交流 (ac) 系统的 IEEE 1584),在计算直流系统的弧闪 (AF) 入射能量 (IE) 时,必须依赖不同研究人员提出的不同方程和模型。本文讨论了储能系统在电弧条件下的行为,并介绍了可用方法估计直流弧闪入射能量的结果。本文对所提出的弧闪入射能量计算方法与可用的实验室测试进行了比较分析。解释了各种类型的电池在短路 (SC) 和电弧条件下可能产生的影响。其中包括所提出的计算方法模拟结果与实验室直流电弧测试测量的比较。
结构。此外,与基于粉末的AM技术相比,使用电线作为原料相比,在制造过程中,与安全有关的风险水平降低了。WAAM技术可以通过使用铝,钢和钛和功能分级的材料等多种合金来用于制造简单和复杂的零件。5除了制造新零件外,WAAM技术还促进了损坏的结构的修复,作为更换整个组件的替代方法。6,7类似于所有AM技术,以及WAAM提到的所有优点,此技术也可能涉及一些缺点。这种制造方法的主要缺点是可能在所构建部分的外表表面相对较高的粗糙度和尺寸的不准确性,可能会施加进一步的沉积后处理,例如表面加工,高压力滚动等。WAAM技术自1990年代以来就已经开发和研究,目前已被航空航天和汽车等几个行业采用,用于制造工业规模的组件。8,9近年来已经进行了进一步的发展,以通过打印大规模的桥梁从组件大小到结构水平的WAAM构造部分的规模。10,为了探索WAAM技术对大型结构的低成本制造的适用性,在各种载荷条件下和不同环境中,必须完全表征由常规钢制成的WAAM建筑零件(即相对便宜)。对于在服务过程中,工程组件或结构在服务过程中受到重复负载周期的工业应用,例如海洋结构,疲劳评估是设计和生活评估阶段的关键考虑。11 - 13尤其是出于生活预测目的,研究材料的疲劳行为至关重要,以更好地了解此类组件中的损害演变和失败行为。因此,必须对由各种合金制成的WAAM构建组件的疲劳行为进行可行性研究,以检查WAAM技术和特定合金在工业应用中的适用性,其中组件或结构受到重复的环状应力。虽然在WAAM建造的零件14,15且偶尔不锈钢的WAAM建造零件中提供了一些有限的疲劳裂纹增长(FCG)数据,但更有效的低碳钢的疲劳响应尚未探索,尚待在诸如Off-Shore off-Shore off-shore wind之类的较不安全临界行业中应用。知道钢合金是在离岸应用中制造金属结构中使用的最合并的材料类型,对WAAM建筑零件的FCG行为进行了进一步研究
摘要:针对线弧增材制造 (WAAM),我们提出并实施了一种创新轨迹策略,该策略适用于不同的、更复杂的几何形状,而非单一解决方案。这种名为 Pixel 的策略可定义为一个复杂的多任务程序,用于执行优化的路径规划,其操作通过计算算法(启发式算法)进行,具有可访问的计算资源和可容忍的计算时间。模型层被分成方形网格,一组点系统地生成并分布在切片轮廓内,类似于屏幕上的像素,轨迹在此规划。Pixel 策略基于从旅行商问题 (TSP) 技术创建轨迹。与现有算法不同,Pixel 策略使用经过调整的贪婪随机自适应搜索程序 (GRASP) 元启发式算法,并由作者开发的四个并发轨迹规划启发式算法辅助。交互从随机初始解决方案(全局搜索)和后续迭代改进(局部搜索)提供连续轨迹。在所有循环之后,定义一条轨迹并用机器代码编写。实施计算评估以证明每种启发式方法对最终轨迹的影响。最终使用两种不同的不易打印的形状进行了实验评估,以证明所提策略的实际可行性。
注释: 1.B 级温度范围为 -40 ℃ ~+85 ℃。 2.这些数据是按最初设计的产品发布的。 3.一次校准实际上是一次转换,因此这些误差就是表 1 和表 3 所示转换噪声的阶数。这 适用于在期望的温度下校准后。 4.任何温度条件下的重新校准将会除去这些漂移误差。 5.正满标度误差包括零标度误差 ( Zero-Scale Error )(单极性偏移误差或双极性零误 差),且既适用于单极性输入范围又适用于双极性输入范围。 6.满标度漂移包括零标度漂移 (单极性偏移漂移或双极性零漂移)且适用于单极性及 双极性输入范围。 7.增益误差不包括零标度误差,它被计算为满标度误差——对单极性范围为单极性偏移 误差,而对双极性范围为满标度误差——双极性零误差。 8.增益误差漂移不包括单极性偏移漂移和单极性零漂移。当只完成了零标度校准时,增 益误差实际上是器件的漂移量。 9.共模电压范围:模拟输入电压不超过 V DD +30mV ,不低于 GND-30mV 。电压低于 GND-200mV 时,器件功能有效,但在高温时漏电流将增加。 10.这里给出的 AIN ( + )端的模拟输入电压范围,对 TM7706 而言是指 COMMON 输入 端。输入模拟电压不应超过 V DD +30mV, 不应低于 GND-30mV 。 GND-200mV 的输入 电压也可采用,但高温时漏电流将增加。 11.VREF=REF IN ( + )- REF IN ( - )。 12.只有当加载一个 CMOS 负载时,这些逻辑输出电平才适用于 MCLK OUT 。 13.+25 ℃时测试样品,以保证一致性。 14.校准后,如果模拟输入超过正满标度 , 转换器将输出全 1, 如果模拟输入低于负满标度, 将输出全 0 。 15.在模拟输入端所加校准电压的极限不应超过 V DD +30mV 或负于 GND - 30mV 。 16.当用晶体或陶瓷谐振器作为器件的时钟源时 (通过 MCLK 引脚 ), V DD 电流和功耗 随晶体和谐振器的类型而变化 (见“时钟和振荡器电路”部分)。 17.在等待模式下,外部的主时钟继续运行, 5V 电压时等待电流增加到 150 μ A , 3V 电 压时增加到 75 μ A 。当用晶体或陶瓷谐振器作为器件的时钟源时,内部振荡器在等待 模式下继续运行,电源电流功耗随晶体和谐振器的类型而变化 (参看“等待模式” 一节)。 18.在直流状态测量,适用于选定的通频带。 50Hz 时, PSRR 超过 120dB (滤波器陷波 为 25Hz 或 50Hz )。 60Hz 时, PSRR 超过 120dB (滤波器陷波为 20Hz 或 60Hz )。 19.PSRR 由增益和 V DD 决定,如下:
(1) 维数 一般取值 1 或 2 ,当 时,要求数据量 在数千点以上,但 过大不能保证序列具有相同 的性质; 一定时,若 ,需要较大才能取得 较好的效果,但是太大会丢失序列的许多细节信 息。 Pincus [ 14 ] 研究认为 比 效果好,可使 序列的联合概率进行动态重构时提供更详细的信 息。 (2) 用来衡量时间序列相似性的大小。如果 选得太小,估计出的统计概率会不理想;若选得 太大,会丢失时间序列中很多细节,达不到预期的 效果。 Pincus [ 14 ] 通过对确定性和随机过程的理论分 析及其对计算和临床应用的研究,总结出取值为 ( 为原始序列的标准差 ) 能得出有效 的统计特征。 (3) 表示输入数据点,一般取值为 100 ~ 5000 。因此根据上述原则,本文取 , 。根据实验研究发现当 时,不同 状态的脑电信号的样本熵并无太大差异;当 时,不同状态的脑电信号的熵值有明显差异。 因此 取值为 100 。即用长度为 100 点,间隔为 4 点 的滑动窗计算 EEG 在运动想象期 (2 ~ 6 s) 的样本 熵序列,然后求该序列的均值作为该 EEG 的样本 熵。 ERS/ERD 现象主要出现在 C3 和 C4 电极对应的 感觉运动区上,例如,右手运动想象时可观测到 C3 电极对应的感觉运动区 ERD 现象,左手运动想 象时可观测到 C4 电极对应的感觉运动区 ERD 现
TM1681 的系统时钟用来产生系统工作的时钟频率。LED 驱动时钟、系统时钟可以取自片内的 RC 振 荡器(256KHz)或者使用 S/W 设置由外部时钟输入。系统振荡器构造如图7 所示。当SYS DIS 命令被 执行时,系统时钟停止,LED 工作循环将被关闭(这条指令只能适用与片内 RC 振荡器)。一旦系统时 钟停止时,LED 显示为空白,时基也会丧失其功能。LED_OFF 命令用来关闭 LED 工作循环,LED 工作 循环被关闭之后,用 SYS DIS 命令节省电源开支,充当省电命令;如果是片外时钟源被选择的话,使 用 SYS DIS 命令不能够关闭振荡器以及执行省电模式。晶体振荡器可以通过OSC 管脚提供时钟频率, 在这种情况下,系统将不能进入省电模式。在系统上电时,TM1681 默认处在 SYS DIS 状态下。
当 HV 脚施加大于 40V 的电压时,内部高压电流源 对 V CC 脚外接的电容充电。为防止 V CC 在启动过程中短 路引起的功率损耗而使 IC 过热损坏,当 V CC 电压低于 1V 时,高压电流源的充电电流被限制为 I HV1 ( 1mA )。 当 V CC 大于 1V 后,高压电流源的充电电流变为 4mA_min , V CC 电压会迅速上升。当 V CC 超过启动水平 V CC_ON 时,高压启动电流源关闭。同时, UVLO 置高有 效, IC 内部电路开始工作。
当同步整流管完全开启后, VDS 两端压降完全跟 随次级电流 Is 。随着次级续流电流的减小 VDS 电压升 高,当 VDS 电压增大到 -30mV 时, Gate 驱动电路的 上管供电被关断 , 驱动电压随内部电阻及漏电流开始缓 慢降低;当 VDS 电压增大到 -20mV 时, Gate 驱动电 压会被钳位在 3.3V 左右。如果 VDS 电压增大到 -1mV 时, WS2260C 会在 25ns 的时间内快速将 GATE 电压 拉到 0V 。同时,关断屏蔽时间开始计时,此期间 GATE 保持低电平。直到 VDS 电压大于 2V ,退出关断屏蔽 计时。
【案例一:人类基因组计划】1990年前后,美国 破译人类基因组不仅会对研究人员和医疗实践产生影响,而且会对每个人和整个社会产生影响。 (保护遗传信息=个人信息、防止基于遗传信息的歧视等)因此,不仅研究人员、医生、患者,而且更广泛意义上的社会也有必要讨论在何种程度上才是“可以接受的”。
本情况说明书由美国临床肿瘤学会 (ASCO) 开发,版权归 © 2024 年美国临床肿瘤学会所有。全球范围内保留所有权利。内容开发过程中未涉及任何赞助商。提及任何公司、产品、服务或疗法并不构成 ASCO 的任何形式的认可。治疗医生或其他医疗保健提供者有责任根据患者的独立经验和知识来确定药物剂量和最适合患者的治疗方法。ASCO 对因使用情况说明书或任何错误或遗漏而引起的或与之相关的任何人身伤害或财产损失不承担任何责任。ASCO 患者教育材料中的信息并非医疗建议或医疗建议的替代品。有医疗保健相关问题的患者应及时致电或咨询其医生或其他医疗保健提供者,不应因为此处的信息而忽视专业医疗建议或延迟寻求专业医疗建议。ASCO 认为,所有治疗决定都应由患者和医生做出。癌症的诊断、治疗和预防方面不断取得进展。