调节(或有限的速度)[7],[8],它可以实现广泛的应用和物理现象,例如时间逆转[8],[9],时间折射[10] - [12] - [12],基本界限[13],光束分裂[14],光束生成[15],光照射[16],旋转[16] [18],完美的吸收[19],参数放大[20],时间阻抗匹配[21]和时间瞄准[22]。近年来,该制度还经过古典物理学[23] - [27]。The modulation velocity can also vary uniformly, ranging from subluminal to superluminal speeds [28] – [32] , which introduces additional novel phenomena, including Doppler shifting [29] , [33] , [34] , magnetless nonreciprocity [35]–[37] , space-time reversal [38] , dynamic diffraction [39] ,不对称带隙[29],[40],[41]和分离[42],光偏射[43] - [45],量子宇宙学类似物[46]和减震波的产生[47]。最后,调制速度可以是不均匀的,加速度可以实现现象,例如移动镜[48],光子发射[49],chirping [50],光弯曲[51]和重力类似物[52] [52]。GGSTEM包括几个基本结构,包括界面,板,时空晶体和时空超材料。接口充当所有GSTEM的核心构建块[53],[54]。平板是通过堆叠以相同速度移动的两个接口[55],[56]来形成的。空间时间晶体是由具有不同特性的平板的定期重复而产生的[29]。纸张的组织如下。接下来,最后,通过将这些晶体的空间和时间周期减少到亚波长度和子周期量表[29],[40]来创建时空元素。在这里,我们介绍了一个新的基本类别结构,即时空楔。通过将两个时空接口与不同的速度相结合,形成了一个时空楔形,这是对应于时空图中的楔形或三角形结构的。在纯粹的空间表示中,作为横坐标和特性(例如折射率或电势)作为顺序的空间,这些楔子对应于收缩(闭合楔形)或扩展(开放楔形)板。第2节介绍了时空楔形的概念,作为召开空间楔形的扩展。然后,第3节提出了所有可能类型的时空楔形物的策略。
fi g u r e 2研究中观察到的范围偏移概述。(a)研究中存在的原始存在和不存在数据以及存在估计值的后中值。原始观测图上的红点/正方形显示原始物种的检测,而黑点/正方形显示非探测。点代表ebird数据记录,正方形代表Bird Atlas Records。模型估计图中的颜色梯度图显示了该模型估计的存在的可能性,其中更多的黄色表示存在的概率更高。深蓝色和深紫色概述了与示例物种相对应的范围变化的数量。深蓝色:Kori Bustard(Ardeotis kori);深紫色:von der Decken的Hornbill(Tockus deckeni)。(b)在1980 - 1999年和2000- 2020年之间,单个物种范围移动的相对变化因子分为总范围变化,有意义的收缩分数和有意义的扩张得分。y轴上的值以线性尺度表示。1的相对变化因子对应于收缩或扩张(损失或获得等于机会区域的区域)的无意义变化,而总范围变化没有变化(1980- 1999年的范围等于2000 - 2020年的范围)。一个相对变化因子为2,对应于面积的两倍,而面积减半的系数为0.5。
2025 年 1 月 6 日 南卡罗来纳州查尔斯顿联合基地 53 53 VI 12 月 8 日 1750 70 VI 12 月 22 日 0256
2025 年 1 月 6 日 南卡罗来纳州查尔斯顿联合基地 53 53 VI 12 月 8 日 1750 70 VI 12 月 22 日 0256
《炎症研究杂志》是一本国际性的同行评审开放获取杂志,欢迎发表有关炎症分子基础、细胞生物学和药理学的实验室和临床发现,包括原创研究、评论、研讨会报告、假设形成和评论:急性/慢性炎症;炎症介质;细胞过程;分子机制;药理学和新型抗炎药物;涉及炎症的临床状况。稿件管理系统完全在线,包括非常快速和公平的同行评审系统。访问 http://www.dovepress.com/testimonials.php 阅读已发表作者的真实引文。
摘要:检测从尖端 - 样品连接散射的电磁辐射已使衍射限制并开始了Polariton纳米影像的繁荣场。但是,大多数技术仅解决散射辐射的振幅和相对相。在这里,我们利用了对超短散射脉冲的场分辨检测来绘制空间和时间上表面极化子的动力学。等离子体极化子是研究的理想模型系统,证明了如何通过直接的数学方程式和归一化方法在时间域中可视化和建模传播模式。这种新颖的方法可以直接评估极化子的组和相速度以及阻尼。此外,它与泵 - 探头方案的结合特别强大,可在光激发时追踪极化子繁殖的亚周期变化。我们的方法很容易适用于其他量子材料,提供了一种多功能工具来研究极性子的超临时空间时空动力学。关键字:Terahertz表面等离子体极化子,近场光学显微镜,S-SNOM,野外分辨,石墨烯,时间分辨,超时地图,相位速度,组速度,群体速度,全光照控制
市长帕特里克·基夫 (Patrick Keefe) 与第二区议员艾拉·诺沃塞尔斯基 (Ira Novoselsky)、市政府官员和当地神职人员一起参加了犹太教节日光明节 (Hanuk kah) 的烛台点灯仪式。照片中,周一在市政厅草坪上举行的仪式上的人员从左至右依次为前学校委员会委员哈尔·福特·艾布拉姆斯 (Hal Ford Abrams)、托宾桥查巴德 (Tobin Bridge Chabad) 的拉比斯鲁利·巴伦 (Sruli Baron)、杰克·萨特之家 (Jack Satter House) 的拉比利奥尔·内沃 (Lior Nevo)、第 2 区议员和前 JWV 全国指挥官艾拉·诺沃塞尔斯基 (Ira Novoselsky)、市长帕特里克·基夫 (Patrick Keefe)、众议员杰西卡·詹尼诺 (Jessica Giannino)、第 5 区议员安吉拉·瓜里诺-萨瓦亚 (Angela Guarino-Sawaya)、提费雷斯以色列神庙 (Temple Tifereth Israel) 的拉比本杰明·弗拉克斯 (Benjamin Flax)、温·斯罗普 (Win throp)、议员马克·西尔维斯特里 (Marc Silvestri)、第 4 区议员保罗·阿根齐奥 (Paul Argenzio)、学校委员会委员约翰·金斯顿 (John Kingston)、学校委员会委员安东尼·卡吉亚诺 (Anthony Caggiano) 和议员安东尼·赞布托 (Anthony Zambuto)。
摘要:在我们问什么是量子引力理论之前,我们有一个合理的追求,即在弯曲时空中制定一个稳健的量子场论 (QFTCS)。几十年来,一些概念问题,尤其是幺正性损失(纯态演变为混合态),引起了人们的关注。在本文中,我们承认时间是量子理论中的一个参数,这与它在广义相对论 (GR) 背景下的地位不同,我们从“量子优先方法”入手,提出了一种基于离散时空变换的 QFTCS 新公式,这提供了一种实现幺正性的方法。我们基于离散时空变换和几何超选择规则,用直接和 Fock 空间结构重写了 Minkowski 时空中的 QFTCS。将此框架应用于德西特 (dS) 时空中的 QFTCS,我们阐明了这种量化方法如何符合幺正性和观察者互补原理。然后,我们评论了对德西特时空中状态散射的理解。此外,我们简要讨论了 QFTCS 方法对未来量子引力研究的影响。
我们提出一个离散的信息基底作为基础层,时空结构、标准模型规范对称性、黑洞熵、全息对偶性和综合复杂性度量由此产生。我们将基底构建为具有明确定义的局部更新规则的四维晶格系统。通过使用重正化群 (RG) 分析系统,我们证明了洛伦兹不变性可以在低能量下出现。通过将基态表示为张量网络,我们将出现的大尺度几何连接到全息对偶,从而重现纠缠熵的 Ryu-Takayanagi 公式。离散视界上的组合微态计数得出贝肯斯坦-霍金黑洞熵定律。此外,我们定义了一个与综合信息理论的 Φ 一致的综合复杂性度量,将复杂性定义为底层因果结构的突发属性。特殊极限重现了已知的理论,例如圈量子引力 (LQG) 和因果集理论,强调这些框架是更基本基础的涌现现象。最后,我们讨论了哥德尔不可判定性和认识论极限,它们是复杂的涌现行为的自然结果。这项工作将涌现定位为将基础物理学的多个方面编织在一起的统一概念。