I. 时钟和频率生成概述 1. 课程介绍 2. 现代通信系统中的锁相时钟 II. 锁相基础 1. PLL 线性模型 2. 环路组件 3. 环路动态 4. 瞬态响应和采集 5. PLL 行为模拟 III. PLL 设计 1. 系统设计视角 - 杂散和调制 - 相位噪声/抖动 - 稳定时间 - 带宽优化 2. 电路设计方面 - 相位检测器 - 电荷泵 - 分频器 - 压控振荡器 3. 延迟锁定环
摘要:我们考虑了相对论潮汐对时钟比较实验频率偏移的影响。在潮汐、轴对称和旋转的地球引力场中,推导出频率偏移和时间传递的相对论公式。借助描述固体地球潮汐响应的洛夫数,我们建立了地面时钟比较实验的潮汐效应与重力仪的局部重力潮汐之间的数学联系,这反过来又为我们提供了一种利用局部重力潮汐数据消除潮汐对时钟比较影响的方法。此外,我们开发了一种受扰开普勒轨道的方法来确定太空任务时钟比较的相对论效应,与传统的未受扰开普勒轨道方法相比,该方法可以进行更精确的计算。利用这种摄动方法,可以给出由于潮汐力、地球扁率等影响而引起的轨道变化对相对论效应的摄动。另外,作为结果的应用,我们模拟了地面时钟比较中频移的潮汐效应,并对天琴任务和 GPS 给出了一些估计。
“将原子钟从大宫殿束管缩小到碎屑尺度设备而不侵蚀性能需要重新思考几个关键组件,包括真空泵和光学隔离器,以及组件集成的新方法,” Aces计划经理John Burke博士指出。,例如,在微电子学中,几乎所有一个人的工作都是平坦的,克里斯纳指出。但是,基准的客户设计了一个倾斜的部分,这是设计所必需的,但是系统集成的问题。基准团队设计了等同于小型吸力杯的解决方案。此外,基准团队必须开发一种使用传统的微电子设备来制造客户独特的MEMS“脚手架”的方法,以实现小型化解决方案。
包括神经蛋白浮动的抽象炎症被认为是保护性反应,可用于修复,再生和恢复中枢神经系统中受损的组织。由于慢性应激,自由基的年龄相关,亚临床感染或其他因素导致生存率降低和神经元死亡增加,持续的肿瘤肿瘤。 昼夜节日症状是改变睡眠/唤醒周期的症状,是神经退行性疾病的最早迹象之一。 大脑的特异性或核心昼夜运动脑脑和肌肉ARNT(芳基氢核受体核转运剂)类似蛋白1(BMAL1)或反式Rev-erbα的蛋白质均具有损害的神经功能和cognitive-cognitive-Mance。 始终如一地,已显示出炎性细胞因子和宿主免疫反应的转录本与昼夜节律的破坏并行相同。 糖皮质激素既表现出类似于核心时钟反式激活者BMAL1和组织特异性超拉节奏的节奏的糖皮质激素,这对于控制神经炎症和重新建立稳态至关重要。 被广泛接受的是,糖皮质激素抑制核因子-Kappa B(NF-κB)介导的反式激活并抑制炎症。 最近的机械阐明表明,核心时钟成分还调节NF-κB介导的大脑和外围组织的反式激活。持续的肿瘤肿瘤。昼夜节日症状是改变睡眠/唤醒周期的症状,是神经退行性疾病的最早迹象之一。大脑的特异性或核心昼夜运动脑脑和肌肉ARNT(芳基氢核受体核转运剂)类似蛋白1(BMAL1)或反式Rev-erbα的蛋白质均具有损害的神经功能和cognitive-cognitive-Mance。始终如一地,已显示出炎性细胞因子和宿主免疫反应的转录本与昼夜节律的破坏并行相同。糖皮质激素既表现出类似于核心时钟反式激活者BMAL1和组织特异性超拉节奏的节奏的糖皮质激素,这对于控制神经炎症和重新建立稳态至关重要。被广泛接受的是,糖皮质激素抑制核因子-Kappa B(NF-κB)介导的反式激活并抑制炎症。最近的机械阐明表明,核心时钟成分还调节NF-κB介导的大脑和外围组织的反式激活。In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF- κ B signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroin fl ammation-神经变性。
概述 GM50301 是一款 2.5GHz 、 10 路输出差分扇出缓冲 器,用于高频、低抖动时钟 / 数据分配和电平转换。输 入时钟可以从两个通用输入或一个晶体输入中选择。 所选定的输入时钟被分配到三组输出,两组包含 5 个 差分的输出和 1 个 LVCMOS 输出。两个差分输出 组均可被独立配置为 LVPECL 、 LVDS 或 HCSL 驱 动器,或者被禁用。 LVCMOS 输出具有用于在启用 或禁用时实现无短脉冲运行的同步使能输入。 GM50301 采用一个 3.3V 内核电源和 3 个独立的 3.3V 或 2.5V 输出电源供电。 GM50301 具有高性能、高功效而且用途广泛,使其 成为替代固定输出缓冲器器件的理想选择,同时增加 系统中的时序裕度。 GM50301 在内核和输出电源域之间没有电源时序要 求。 功能框图
摘要:20 世纪 90 年代末,锁模飞秒激光器被引入作为合成和测量光频率的重要新工具。飞秒激光器的简单性、稳定性和更高的精度使其在光频率计量领域占有重要地位。此外,它们的使用正在开发基于精确控制载流子包络相位的重要新时域应用。预计参考原子和离子中的光学跃迁的窄线宽激光器将很快成为任何类型的最佳电磁频率参考,预计分数频率不稳定性低于 1 × 10 -15 τ -1/2,不确定性接近 1 × 10 -18 。与此类超精密频率标准结合使用时,飞秒激光器可充当宽带合成器,将输入光频率相位相干地转换为跨越数百太赫兹的光频率阵列和可计数的微波频率。合成过程中引入的过量分数频率噪声可接近 1 × 10 -19 的水平。
摘要 探测标准模型基本常数的变化将为我们提供新物理学的有力证据,并可能揭开暗物质和暗能量的面纱。在这项工作中,我们讨论了如何使用原子和分子钟网络在广泛的时间尺度上以前所未有的灵敏度寻找此类变化。这正是最近启动的 QSNET 项目的目标:用于测量基本常数稳定性的时钟网络。QSNET 将包括最先进的原子钟,但也将开发下一代分子和高电荷离子钟,以增强对基本常数变化的灵敏度。我们描述了 QSNET 的技术和科学目标,并评估了其预期性能。我们表明,在 QSNET 探测的参数范围内,我们要么会发现新物理学,要么会对基本对称性的违反和一系列超出标准模型的理论施加新的约束,包括暗物质和暗能量模型。
• 本课程深入了解锁相时钟,以及获得锁相环 (PLL) 的系统视角和电路设计方面的能力,适用于各种应用。在本课程的前半部分,将讨论 PLL 的基本理论分析和系统/电路设计注意事项。课程的后半部分包括大量讲座,涵盖各种 PLL 应用中的实际设计方面。耦合、可测试性和片上补偿等一些高级主题对于那些对片上系统 (SoC) 设计和高级混合信号 IC 设计感兴趣的人也很有用。通过本课程,学生希望学习以下内容; - 时钟生成/同步在现代通信系统中的作用 - PLL 的基本概念和理论分析 - 系统设计视角和架构 - 实际电路设计方面 - 高级主题;耦合、可测试性、片上补偿……
3.18.1 Introduction to MEMS Atomic Clocks 572 3.18.1.1 Introduction 572 3.18.1.2 Vapor Cell Atomic Clocks 573 3.18.1.3 Coherent Population Trapping 575 3.18.1.4 CPT in Small Vapor Cells 577 3.18.2 Design and Fabrication 578 3.18.2.1 Introduction 578 3.18.2.2 Physics Package 579 3.18.2.2.1简介579 3.18.2.2.2垂直腔表面发射激光580 3.18.2.2.3蒸汽单元581 3.18.2.2.4光学584 3.18.2.2.2.5加热585 3.18.2.2.2.2.2.2.2.2.2.2.2.2.2.2 CSAC 588 3.18.2.3.3其他MEMS共振器588 3.18.2.4控制电子设备590 3.18.2.5包装591 3.18.3性能592 3.18.3.1简介592 3.18.3.2频率稳定592 3.18.3.2.2-2.2.2.2.2.2.3.3.1.2.5频率592 3.18.1.长期频率稳定性595 3.18.3.3功耗596 3.18.3.4尺寸597 3.18.4高级技术597 3.18.4.1简介597 3.18.4.2共振对比597 3.18.4.4.4.4 Introduction 600 3.18.5.2 End-State CSAC 600 3.18.5.3 Nanomechanically Regulated CSAC 601 3.18.5.4 CPT Maser 601 3.18.5.5 Raman Oscillator 601 3.18.5.6 Ramsey-Type CPT Interrogation 602 3.18.5.7 N-Resonances 602 3.18.5.8 Others 603 3.18.6 Other MEMS Atomic Sensors 603参考文献605
背面电源传输网络 我们的 BS-PDN 结构如图 1 所示,其中 PDN 利用了几乎 100% 的 BSM 资源,将电源布线资源与正面的信号分离。A. 背面 DC-DC 转换器:片上 DC-DC 单元转换器 (UC) 提供高效转换和块级电压调节 [3]。封装寄生效应会导致不必要的 IR 压降/反弹,影响正面 (FS) 和 BS-PDN。相反,片上 UC 可以减轻封装和键合带来的压降;然而,它们的大尺寸使它们不适合 FS 集成。相比之下,背面提供了足够的空间,可以实现密集的 UC 集成而不会造成布线拥塞。B. BS-UC 的集成:我们的 4:1 背面 UC(BS-UC)将 3.3V 降至 0.7V 的片上电源电压。为了分离两个电压域,添加了两个额外的背面金属层 MB3 和 MB4(见表 I)。MB3 专用于 BS-UC 布线;MB4 用于为 BS-UC 提供 3.3V VDD 和 0V VSS 输入。图 2 显示了我们的 BS-UC 堆叠。我们的电压域去耦确保 MB4 和 MB2 层之间没有连接,从而保留了 BS-PDN 配置。对于 BS-UC 放置,我们应用了交错策略以实现紧凑性。BS-UC PDN 金属层击穿和 BS-UC 放置如图 3 所示。C. BS-UC 的好处:BS-UC 降低了最坏情况下的动态 IR 降和逐层最小电压降(见图 4)。最后,去耦策略可以实现更高的 C4/微凸块密度,而不会产生显著的电源焊盘面积开销。