ADS5410 是一款 12 位 ADC。其低功耗(360 mW)和 80 Msps 的高采样率是通过使用基于先进低压 CMOS 工艺构建的先进开关电容流水线架构实现的。ADS5410 模拟核心主要采用 3.3 V 电源供电,消耗大部分电量。数字核心采用 1.8 V 电源供电。如果设计中没有 1.8 V 电源,则可以使用 TPS76318 从 3.3 V AVDD 电源获取 1.8 V。为了增加接口灵活性,数字输出电源 (OV DD ) 可以设置为 1.6 V 至 3.6 V。ADC 核心由 10 个流水线级和一个闪存 ADC 组成。每个级产生 1.5 位。上升时钟沿和下降时钟沿都用于每半个时钟将样本通过流水线传输一次,总共六个时钟周期。
TA 输入忽略输入传输确认 — 如果没有外部总线活动,则忽略 TA 输入。TA 输入是数据传输确认 (DTACK) 功能,可以无限延长外部总线周期。通过保持 TA 处于无效状态,可以将任意数量的等待状态(1、2……无穷大)添加到 BCR 插入的等待状态中。在典型操作中,TA 在总线周期开始时处于无效状态,被置位以启用总线周期的完成,并在下一个总线周期之前处于无效状态。当前总线周期在 TA 与内部系统时钟同步置位后完成一个时钟周期。等待状态的数量由 TA 输入或总线控制寄存器 (BCR) 确定,以较长者为准。BCR 可用于设置外部总线周期中的最小等待状态数。
摘要 - 生物学序列比对是一种广泛使用的技术,其中搜索序列数据库以找到与输入查询相似的序列。在这项工作中,我们专注于最受欢迎的本地序列一致性算法;基本的本地对齐搜索工具(BLAST)。这是一个计算密集型操作,并且具有指数增长的数据库,使实时执行变得更加复杂。现场可编程的门阵列(FPGA)提供类似硬件的性能和类似软件的可编程性,使它们成为计算复杂任务的理想选择。本文介绍了FPGA上BLAST的基于内容的可调存储器(CAM)实现,该实现使用并发计算加速了对齐过程。搜索输入查询是在数据库序列中并联执行的,以在一个时钟周期中产生结果。所提出的设计是在Xilinx Virtex-7 FPGA设备XC7VX690TFFG1761上实现的。结果表明,与可用的搜索算法相比,相比之下,可行性和加速性能(149-180 MHz速度)。
晶体管需要低电源电压,因此不幸的是,电路节点上的临界电荷会降低。因此,在航空航天应用中,电路容易受到甚至低辐射能量引起软误差的颗粒的撞击[1]。辐射颗粒包括质子,中子,α颗粒,重离子,电子等[2]。粒子的碰撞会产生许多电子和孔,这些电子和孔可以在受影响的晶体管的排水口收集,从而导致瞬态电压干扰。在顺序/存储电路中,存储节点的值可以暂时翻转(如果可以恢复)或长时间翻转(如果它是无法恢复的,并且需要在下一个时钟周期中需要刷新),从而导致单个事件沮丧(SEU)[3]。请注意,单节点误(SNU)是一种类型的SEU。在组合/逻辑电路中,逻辑门的输出值可能会受到干扰,输出单个事件瞬态(set)脉冲[4]。SEU和集合是典型的软错误,在最坏情况下会导致电路失败甚至系统崩溃。因此,航空应用非常需要软误差。
摘要 — 本文介绍了一种 28 nm CMOS 工艺的四阶 100 MHz 带宽连续时间 (CT) delta-sigma 调制器。介绍了一种初步采样和量化 (PSQ) 技术,该技术几乎可以充分利用量化时钟周期,从而在 0.65 过量环路延迟 (ELD) 系数下延长后端量化器 (QTZ) 的可用转换时间。使用 PSQ,后端 QTZ 的采样和量化分为粗采样和细采样两个步骤,类似于子范围架构以节省功耗。QTZ 以 2 GHz 运行,仅需 1.4 mW 功率即可实现 7 位 (1 b 纠错)。通过在前馈 (CIFF) 拓扑中的积分器级联中添加前馈 ELD 补偿路径,此设计中只需要一个数模转换器 (DAC)。该调制器的信号带宽为 100 MHz,信噪比 (SNDR) 为 72.6 dB,功耗仅为 16.3 mW(1.1 和 1.5 V 电源供电)。原型的动态范围为 76.3 dB,Schreier FoM 为 174.2 dB,有效面积为 0.019 mm 2 。
IFM 接收器的工作原理 当前的 IFM 接收器技术对 RF 频率、RF 幅度和 RF SNR 进行采样;随后的数字处理提取峰值 RF 幅度、与峰值 RF 测量时间同步的 RF 输入频率、TOA 和 RF 包络脉冲宽度。测量结果通过每个时钟周期估算的最小可接受 RF SNR 进行限定。这使接收器能够自动调整以适应输入 SNR 的变化,而无需积分噪声附加阈值。IFM 接收器数字处理和串行 PDW 生成使其成为处理超外差接收器 IF 输出的理想设备。在许多 ELINT 系统中,采用两个 IFM 接收器和一个超外差接收器的并行组合。一个 IFM 接收器提供 2-18GHz 的瞬时单频带覆盖,而超外差接收器使用第二个 IFM 接收器进行 IF 处理,提供对选定信号的高灵敏度精确分析。这种组合同时提供了高截获概率 (HPI) 能力和详细分析能力。IFM 接收器最显著的操作优势也是其最大的缺点:虽然它准确地处理瞬时观察到的最大 RF 输入信号,但它忽略了同时存在的较小功率的 RF 输入。在 IFM 接收器的早期开发中,同时出现低于 20dB 的信号并不罕见
I.简介 638 A.原子频率标准和时钟的成分 638 B.频率标准的特性 639 C. 论文范围 639 II.时钟的要求:具有高频、窄线共振的量子系统 639 A.稳定性 639 B. 高频时钟候选者 640 C. 系统效应 641 1.环境扰动 641 a.磁场 641 b.电场 641 2.相对论性偏移 642 a. 多普勒频移 643 b. 引力红移 643 III.光谱纯且稳定的光振荡器 643 A. 激光稳定技术 643 B.稳定光源的远程分布 644 C. 稳定光源的光谱分布 645 IV.光学标准的测量技术 646 A.时钟周期和询问方案 646 B.原子噪声过程 647 C. 激光稳定原子共振 648 V. 捕获离子光频标准 649 A. 捕获离子 650 1.Paul 阱 651 2.线性离子阱 651 B. 冷却技术和 Lamb-Dicke 机制 653 C. 捕获离子的系统频率偏移 653 1.运动引起的偏移 653 2.塞曼效应 654 3.四极偏移 654
摘要 — 在当今的数字环境中,密码学通过加密和身份验证算法在确保通信安全方面发挥着至关重要的作用。虽然传统的密码方法依靠困难的数学问题来保证安全性,但量子计算的兴起威胁到了它们的有效性。后量子密码学 (PQC) 算法(如 CRYSTALS-Kyber)旨在抵御量子攻击。最近标准化的 CRYSTALS-Kyber 是一种基于格的算法,旨在抵御量子攻击。然而,它的实现面临着计算挑战,特别是基于 Keccak 的函数,这些函数对于安全性至关重要,也是 FIPS 202 标准的基础。我们的论文通过设计 FIPS 202 硬件加速器来提高 CRYSTALS-Kyber 的效率和安全性,从而解决了这一技术挑战。我们选择在硬件中实现整个 FIPS 202 标准,以扩大加速器对所有依赖此类哈希函数的可能算法的适用性,同时注意提供对片上系统 (SoC) 内系统级集成的现实假设。我们针对 ASIC 和 FPGA 目标提供了面积、频率和时钟周期方面的结果。与最先进的解决方案相比,面积减少了 22.3%。此外,我们将加速器集成在基于 32 位 RISC-V 的安全导向 SoC 中,我们在 CRYSTALS-Kyber 执行中展示了强大的性能提升。本文提出的设计在所有 Kyber1024 原语中表现更好,在 Kyber-KeyGen 中的改进高达 3.21 倍。
拓扑几何动力学(TGD)是一种统一的基本相互作用理论,它导致意识理论是基于一个新的本体论,称为零能量本体论(ZEO)的量子测量理论的概括。量子生物学是TGD的第二应用。量子引力将在量子生物学和意识中起关键作用,但在某种意义上,与penrose-hamerero理论相比非常不同。暗物质作为普通物质的阶段的TGD视图具有很大的有效Planck常数,这使得在任意长度尺度的量子相干性可能。也是时空和电磁场的新视图是中心的,并导致携带暗物质的磁体的概念,并充当控制它的生物体的“老板”,并从中获得了感觉输入(EEG)。ZEO的预测,普通状态函数降低的时间变化在图片中起着至关重要的作用。太阳和地球的磁体可能是有关量子引力量子相干性的关键参与者。量子重力康普顿时间τgr(按等效原理不取决于粒子质量)代表量子引力相干时间的最小值。如果时钟周期短于τgr,则统计确定性肯定会失败,但也可能会在更长的时钟周期中失败。人类和计算机的纠缠也是一种非常有趣的可能性,并且有一些证据表明这种纠缠。
半导体中的电子自旋是最先进的量子比特实现方式之一,也是利用工业工艺制造的可扩展量子计算机的潜在基础 [1–3]。一台有用的计算机必须纠正计算过程中不可避免地出现的错误,这需要很高的单次量子比特读出保真度 [4]。用于错误检测的全表面码要求在计算机的每个时钟周期内读出大约一半的物理量子比特 [5]。直到最近,自旋量子比特装置中的单次读出只能通过自旋到电荷的转换来实现,由附近的单电子晶体管 (SET) 或量子点接触 (QPC) 电荷传感器检测 [6–9]。然而,如果使用色散读出,硬件会更简单、更小,这利用了双量子点中单重态和三重态自旋态之间的电极化率差异 [10–13]。可以通过与量子点电极之一粘合的射频 (RF) 谐振器监测由此产生的两个量子比特状态之间的电容差异。量子点中的电荷跃迁也会发生类似的色散偏移,这样反射信号有助于调整到所需的电子占据 [14–16]。色散读出的优势在于它不需要单独的电荷传感器,但即使在自旋衰减时间较长的系统中,电容灵敏度通常也不足以进行单次量子比特读出 [17–23]。最近,已经在基于双量子点的系统中展示了色散单次读出 [24–28],但为了提高读出保真度,仍然需要更高的灵敏度。