除了了解算法是什么,审计人员可能还需要了解算法的特征。这些特征(例如与给定算法相关的智能、复杂性和类型)随时间变化。智能和复杂性的程度将影响与给定算法相关的固有风险水平。在其他条件相同的情况下,复杂性越高,风险也就越大。对于更复杂的流程,算法实施不正确或无法按预期运行的可能性就越大,这可能会导致结果不理想。因此,审计人员在识别算法时考虑这些特征非常重要。有关每个特征的更多信息,请参阅下文。
示例应用程序将散货船和油轮结构视为展示本项目涉及的概念的平台。通过考虑报告介绍部分概述的七个步骤,将基于可靠性的预期寿命评估过程并行应用于这两艘船。这些步骤包括:船舶特定识别、结构部分和组件定义、载荷评估、局部细节特征定义、时间相关可靠性评估、系统可靠性分析和结果应用。给出了油轮和散货船的时间相关可靠性分析结果、故障概率的时间变化,并进行了比较,以说明它们的差异和其他因素,例如维护水平的影响。
示例应用程序将散货船和油轮结构视为展示本项目涉及的概念的平台。通过考虑报告介绍部分概述的七个步骤,将基于可靠性的预期寿命评估过程并行应用于这两艘船。这些步骤包括:船舶特定识别、结构部分和组件定义、载荷评估、局部细节特征定义、时间相关可靠性评估、系统可靠性分析和结果应用。给出了油轮和散货船的时间相关可靠性分析结果、故障概率的时间变化,并进行了比较,以说明它们的差异和其他因素,例如维护水平的影响。
在太空技术进步的推动下,几家公司正在计划卫星星座,以提供宽带互联网服务。尽管这些发展迅速发生,但这些网络的设计也有许多确定性。一个关键的开放问题是,他们是否将卫星之间的直接连通性(而不仅仅是地面 - 卫星连接)结合在一起。我们可以根据该问题的两个结果构成网络行为。我们的分析表明,卫星间的链接大大减少了潜伏期的时间变化,增加了对天气的弹性,并且可以产生3倍以上没有此类链接的吞吐量。因此,这个设计元素是否可以对这些网络的性能,可靠性和经济学有很大的影响。
空气污染已成为全球关注的关注点,因为它对人口的健康和福祉的负面影响。为了减轻其影响,必须准确监测跨区域和时间的污染物浓度。传统解决方案依赖于物理驱动的方法,利用粒子运动方程来预测污染物的时间变化。尽管可靠且易于解释,但它们在计算上还是需要背景域知识的计算昂贵。另外,最近的作品表明,数据驱动的方法,尤其是深度学习模型,大大降低了计算费用并提供准确的预测;但是,以大量数据和存储要求和较低的解释性为代价。
1300小时LR7,IEB摘要:电化学阻抗光谱(EIS)是一种表征电化学系统的强大非侵入性工具。 应用于锂离子电池,EIS被证明是其最先进的(SOH)的信息指标。 但是,EIS受线性和平稳性的限制限制,而锂离子电池固有地以非线性和非平稳的方式行为。 关于线性,电极上的电压是电流通过电极的非线性函数。 线性是通过在操作点上应用零均值电流激发来实现的,因此非线性函数在该范围内是准线性的。 关于时间变化,充满电和完全放电的细胞的阻抗是不同的,对于原始和老化的细胞,或在室温和冰冻环境中保持的细胞相同。 对于锂离子电池,这意味着在特定的电荷(SOC)和温度下,应以稳定状态进行EIS实验。 因此,阻抗取决于工作点(温度和SOC),线性和平稳性的限制非常限制。 最近,我们开发了Operando EIS,以揭示无法满足线性和平稳性的测量结果。 该技术允许在一个随时间变化的轨迹上测量电化学系统的阻抗,例如,在充电或排放锂离子电池时。1300小时LR7,IEB摘要:电化学阻抗光谱(EIS)是一种表征电化学系统的强大非侵入性工具。应用于锂离子电池,EIS被证明是其最先进的(SOH)的信息指标。但是,EIS受线性和平稳性的限制限制,而锂离子电池固有地以非线性和非平稳的方式行为。关于线性,电极上的电压是电流通过电极的非线性函数。线性是通过在操作点上应用零均值电流激发来实现的,因此非线性函数在该范围内是准线性的。关于时间变化,充满电和完全放电的细胞的阻抗是不同的,对于原始和老化的细胞,或在室温和冰冻环境中保持的细胞相同。对于锂离子电池,这意味着在特定的电荷(SOC)和温度下,应以稳定状态进行EIS实验。因此,阻抗取决于工作点(温度和SOC),线性和平稳性的限制非常限制。最近,我们开发了Operando EIS,以揭示无法满足线性和平稳性的测量结果。该技术允许在一个随时间变化的轨迹上测量电化学系统的阻抗,例如,在充电或排放锂离子电池时。为此,使用了非零均值随机相多电流激发,并且从电压响应的光谱中估算了沿轨迹的时间变化阻抗。
该研究领域的主要限制之一是用于训练机器学习和深度学习模型的数据的可用性。目前大多数研究使用 UNOS 注册数据库,并报告了可用于训练模型的数据量有限。人们认为,使用更多数据来训练模型,模型将给出更准确的预测。由于患者和捐赠者的特征以及研究中的选择标准随时间变化,所有模型的性能都随着时间的推移而下降。此外,当模型给出预测时,有时研究人员无法解释它给出预测的原因,例如风险评分。因此,医生无法可靠地将其用于某些患者的独特情况。
在太空技术进步的推动下,几家公司正在计划卫星星座,以提供宽带互联网服务。尽管这些发展迅速发生,但这些网络的设计也有许多确定性。一个关键的开放问题是,他们是否将卫星之间的直接连通性(而不仅仅是地面 - 卫星连接)结合在一起。我们可以根据该问题的两个结果构成网络行为。我们的分析表明,卫星间的链接大大减少了潜伏期的时间变化,增加了对天气的弹性,并且可以产生3倍以上没有此类链接的吞吐量。因此,这个设计元素是否可以对这些网络的性能,可靠性和经济学有很大的影响。
YayimlanmişMakaleler(Sci Indeks):1。 Sezgin-ugranlı,H.G。 和Özçelep,Y。 (2021)。 “ 根据应力诱导的氧化物电容变化,在不同的电应力水平下确定电源MOSFET的门氧化物降解”,电子设备上的IEEE交易68(2):688-696。 2。 Sezgin-ugranlı,H.G。 和Özçelep,Y。 (2018)。 “基于恒定电应力下的电容和亚阈值电流测量的VDMOSFET的新方法”,电子设备上的IEEE交易65(4):1650-1652。 3。 Sezgin-ugranlı,H.G。 和Özçelep,Y。 (2018)。 “在恒定电应力下对VDMOSFET开关功率耗散变化的研究”,微电子学期刊78:81-87。 4。 Sezgin,H.G。 和Özçelep,Y。 (2015)。 “功率MOSFET切换时间变化在恒定电应力下的表征和建模”,微电子可靠性55(3-4):492-497。YayimlanmişMakaleler(Sci Indeks):1。Sezgin-ugranlı,H.G。和Özçelep,Y。(2021)。 “根据应力诱导的氧化物电容变化,在不同的电应力水平下确定电源MOSFET的门氧化物降解”,电子设备上的IEEE交易68(2):688-696。2。Sezgin-ugranlı,H.G。和Özçelep,Y。(2018)。“基于恒定电应力下的电容和亚阈值电流测量的VDMOSFET的新方法”,电子设备上的IEEE交易65(4):1650-1652。3。Sezgin-ugranlı,H.G。和Özçelep,Y。(2018)。“在恒定电应力下对VDMOSFET开关功率耗散变化的研究”,微电子学期刊78:81-87。4。Sezgin,H.G。和Özçelep,Y。(2015)。“功率MOSFET切换时间变化在恒定电应力下的表征和建模”,微电子可靠性55(3-4):492-497。
摘要:随着技术的进步和价格下跌,电池储能系统(BESS)被视为电源系统中有前途的存储技术。在本文中,引入了随机的BESS计划模型,该模型决定了在可再生资源和电力负载的不确定性下,在高压电源系统中确定了在高压电力系统中共同将公用事业规模太阳能光伏(PV)系统共同放置的最佳容量和持续时间。优化模型最小化总成本旨在从可再生来源获得至少20%的电能,同时满足所有物理约束。此外,还应用了两阶段的随机编程来制定数学优化问题,以发现贝斯的最佳持续时间和容量。在调度BESS时,需要考虑时间表代表Bess状态的时间变化;因此,采用了一种以1-h时间步长生成随机样本路径的方案生成方法,以明确表示不确定性和时间变化。提出的数学模型应用于经过修改的300个总线系统,该系统包括300台电动总线和411个传输线。当采用不同数量的场景以查看对模型中场景数量的敏感性时,比较了最佳的BES持续时间和容量,并计算出“随机解决方案的值”(VSS)以验证随机参数包含的影响。结果表明,当场景数量从10增加到30时,建筑物的成本和能力增加。通过检查VSS,可以观察到随机参数的显式表示会影响最佳值,并且当应用大量的方案时,影响会更大。