摘要 — 脑控车辆 (BCV) 是一种已成熟的技术,通常专为残疾患者设计。本综述重点介绍与脑控车辆最相关的主题,特别是考虑使用生物信号(如脑电图 (EEG)、眼电图和肌电图)控制的地面 BCV(例如,移动汽车、汽车模拟器、真实汽车、图形和游戏汽车)和空中 BCV(也称为 BCAV)(例如,真实四轴飞行器、无人机、固定翼、图形直升机和飞机)。例如,基于 EEG 的算法从大脑的运动想象皮层区域检测模式以进行意图检测,例如事件相关去同步\事件相关同步、状态视觉诱发电位、P300 和生成的局部诱发电位模式。我们已经确定,报告的最佳方法采用机器学习和人工智能优化方法,即支持向量机、神经网络、线性判别分析、k-最近邻、k-均值、水滴优化和混沌拔河优化。我们考虑了以下指标来分析不同方法的效率:生物信号的类型和组合、时间响应和准确度值与统计分析。本研究对过去十年的主要发现进行了广泛的文献综述,指出了该领域的未来前景。
然而,在光电设备中,PB对应物的高性能,最近的努力,尤其是在CS 2 Agbibr 6双PSK上,[2]证明了它们在太阳能电池的广泛应用中的强大用途,[3-9] [3-9]光探测器,[10,11] x射线检测器,[10,11] X射线检测器[12] memristors [13] Memristors [13] 13]。[14] Moreover, when passing from the 3D double PSK toward its layered counterparts with two (2L) or one (1L) octahedra layers by introducing large A-site organic cations, such as butylam- monium (BA) or propylammonium (PA), allowed to develop new two-dimensional (2D) materials with tunable optoelec- tronic properties, such as the character of the bandgap as well as带隙的能量从≈2eV到≈3eV,这与无机晶格的失真有关。[15–19]尺寸还原也明显提高了候选人的ON/OFF比率,从10 2(CS 2 Ag-Birb 6至3d)到10 7(((Ba)2 Csagbibr 7),因为在扭曲的晶体结构中,离子迁移受到离子迁移的青睐。[20]从(Ba)2 Csagbibr 7中获得了具有较大迁移率的产物的X射线光绘制器,其中敏感性取决于晶体的尺寸(八面体层的数量)。[21,22]光电探测器的时间响应可以通过尺寸减小来增强,同时保持相似的检测率; [23]
摘要:在认知神经科学研究中,事件相关电位 (ERP) 的计算模型可以提供一种为观察到的波形开发解释性假设的方法。然而,接受过认知神经科学培训的研究人员在实施这些模型时可能会面临技术挑战。本文提供了有关开发 ERP 波形的循环神经网络 (RNN) 模型的教程,以促进计算模型在 ERP 研究中更广泛地使用。为了举例说明 RNN 模型的使用,检查了在通道 Pz 处测量的目标和非目标视觉事件引起的 P3 成分。实验事件的输入表示和相应的 ERP 标签用于在监督学习范式中优化 RNN。将一个输入表示与多个 ERP 波形标签链接起来,然后优化 RNN 以最小化均方误差损失,会导致 RNN 输出近似于总平均 ERP 波形。然后可以将 RNN 的行为评估为 ERP 生成背后的计算原理的模型。除了拟合这样的模型之外,本教程还将演示如何根据 RNN 的隐藏单元的时间响应对其进行分类,并使用主成分分析对其进行表征。统计假设检验也可以应用于这些数据。本文重点介绍建模方法以及随后使用公开数据和共享代码以操作指南的形式对模型输出进行分析。虽然对 P3 响应生成的具体解释的关注相对较少,但结果引发了一些有趣的讨论点。
可切换的金属有机骨架 (MOF) 会随着时间改变其结构并选择性地打开其孔隙吸附客体分子,从而实现高选择性分离、压力放大、传感和驱动应用。MOF 的 3D 工程已达到高度成熟,但时空演化为通过 t 轴设计在第 4 维(时间)中工程材料开辟了新视角,本质上是利用了对活化能垒的刻意调整。这项工作展示了第一个例子,其中展示了可切换 MOF(DUT-8,[M 1 M 2 (2,6-ndc) 2 dabco] n,2,6- ndc = 2,6-萘二甲酸酯,dabco = 1,4二氮杂双环[2.2.2]辛烷,M 1 = Ni,M 2 = Co)的显式时间工程。时间响应通过改变钴含量来刻意调整。本文介绍了一系列先进的分析方法,用于分析由蒸汽吸附激发的切换动力学,这些方法使用原位时间分辨技术,包括从整体吸附和先进的同步加速器 X 射线衍射实验到单个晶体分析。一种基于微流体通道中单个晶体的微观观察的新型分析技术揭示了迄今为止报道的吸附切换的最低限度。晶体整体的时空响应差异源于诱导时间,该诱导时间在统计上有所不同,并且随着钴含量的增加而特征性地变宽,这反映了活化能垒的增加。
摘要。气孔结合(G S)的准确和有效的建模一直是跨尺度植被模型的关键挑战。大多数土地表面模型(LSM)的当前实践假定稳态G S,并预测了气孔对环境线索的重音,因为固定方案之间立即跳跃。但是,气孔的响应可能比光合作用的数量级要慢,并且在下一个模型时间步长之前,即使在半小时的时间表上,通常也无法达到稳定状态。在这里,我们在气候建模联盟中开发的LSM的植被模块中实现了一个简单的动态G S模型,并研究了由叶片到顶篷尺度的稳态假设引起的潜在偏差。与稳态模型相比,动态模型更好地预测了光合作用和气孔电导对使用叶片测试的光强度变化的时间响应。在生态系统频道模拟中,虽然G S滞后响应的影响在每月的综合泛滥方面可能并不重要,但我们的结果突出了在量化早晨和夜晚中量化型号时考虑这种效果的重要性,以及对Diur-nal Himentersesistations in ecoseSeceS的解释。类似物还表明,当气孔显示出不同的打开和闭合速度时,集成的流量中的偏差更为重要。此外,预后建模可以绕过稳态模拟所需的A-C I迭代,并且可以通过可比的构成成本来稳健地运行。总体而言,我们的研究表明了动态G S建模的影响,以提高LSMS的准确性和效率,并促进我们对植物与环境相互作用的理解。
可切换金属 - 有机框架(MOF)随着时间的流逝而改变其结构,并有选择地打开其吸附的客体分子,从而导致高度选择性的分离,压力扩增,感应和驱动应用。MOF的3D工程已经达到了高水平的成熟度,但是Spatiotem -Poral Evolution通过T-轴设计在第四维(时间)中开辟了一种新的视角,从本质上利用了故意调整激活障碍。这项工作演示了第一个示例,其中可切换MOF(DUT-8,[M 1 M 2(2,6-NDC)2 DABCO] N,2,6- ndc = 2,6- ndc = 2,6-萘二羧酸盐,dabco,dabco = 1,4diazabicyclo [2.2.2] coco coco coco coco coco coco coco coco coco coco coco coco coco,m 1 =时间响应是故意通过钴含量变化来调整的。提出了一系列高级分析方法,用于分析使用蒸气吸附刺激的开关动力学,使用原位时间分辨技术,从集合吸附和先进的同步体X射线X射线衍射实验到单个晶体分析等级。基于微流体通道中各个晶体的显微镜观察的新分析技术揭示了到目前为止报道的吸附切换的最低限制。晶体集合的时空响应的差异源自统计上的诱导时间,并随着钴含量的增加而变化,反映了激活屏障的增加。
急性施用左旋多巴或多巴胺受体激动剂减轻PD运动症状并增加,例如,PD患者的手指攻击速度(Nutt等人1997)。 单剂量的效果在24小时后完全可逆,因此称为短持续时间响应(SDR)。 长期接受左旋多巴的患者显示出额外的长时间响应(LDR),需要数周的时间才能建立和至少几天才能消失。 LDR与SDR叠加,无法用药代动力学来解释。 已经提供了对LDR的不同解释,包括左旋多巴的存储。 然而,也可以观察到LDR的作用短,而作用于多巴胺受体的幼虫(Stocchi et al。) 2001)。 基于可用数据,我们目前假设SDR是由于Albin和de Long模型所代表的基底神经节射击率的急性变化而引起的(图 1 a)。 相比之下,LDR是由神经兴奋性和连通性的塑性变化引起的(图 1 b)。 在Elldopa研究中还观察到了LDR,在1年中,用安慰剂或左旋多巴治疗患者,最高600 mg/d治疗患者。 600毫克左旋多巴的患者在达到稳定剂量的左旋多巴后的运动性能增加了,并且在勒沃达帕(Levodopa)撤回2周后,研究结束时的运动性能要好得多(Fahn等人。 2004)。 2020)。 在所有这些研究中,LDR的大小大大大于SDR,突出了理解LDR构成的细胞机制的治疗潜力。1997)。单剂量的效果在24小时后完全可逆,因此称为短持续时间响应(SDR)。长期接受左旋多巴的患者显示出额外的长时间响应(LDR),需要数周的时间才能建立和至少几天才能消失。LDR与SDR叠加,无法用药代动力学来解释。已经提供了对LDR的不同解释,包括左旋多巴的存储。然而,也可以观察到LDR的作用短,而作用于多巴胺受体的幼虫(Stocchi et al。2001)。基于可用数据,我们目前假设SDR是由于Albin和de Long模型所代表的基底神经节射击率的急性变化而引起的(图1 a)。相比之下,LDR是由神经兴奋性和连通性的塑性变化引起的(图1 b)。在Elldopa研究中还观察到了LDR,在1年中,用安慰剂或左旋多巴治疗患者,最高600 mg/d治疗患者。600毫克左旋多巴的患者在达到稳定剂量的左旋多巴后的运动性能增加了,并且在勒沃达帕(Levodopa)撤回2周后,研究结束时的运动性能要好得多(Fahn等人。2004)。 2020)。 在所有这些研究中,LDR的大小大大大于SDR,突出了理解LDR构成的细胞机制的治疗潜力。2004)。2020)。在所有这些研究中,LDR的大小大大大于SDR,突出了理解LDR构成的细胞机制的治疗潜力。在最初有药物幼稚的晚期PD患者的队列中,LDR最近通过在左旋多巴治疗1或2年后通过相机性能估算,并隔夜退出基线值(Cilia等人在功能上,LDR存储多巴胺药物的作用,就像缓冲液一样,并导致运动性能在PD的蜜月期间通常不会波动,即使每天仅在三个时间点上服用多巴胺能药物。在此阶段,当患者忘记服药时,运动性能通常不会改变。因此,患者可能会出现他们的药物无效的错误印象。当临床医生想验证这些患者的运动症状确实对多巴胺能药物的反应时,他们需要比通常在波动患者中使用的时间更长的时间进行多巴形戒断。在这种情况下,我们注意到急性左旋多巴挑战
停飞之前,其他子系统也发生了几次电气故障。全日空航空公司 (ANA) 报告称,2012 年 5 月至 12 月期间,至少有 10 块电池因电压异常或其他异常行为而不得不退回 [1]。2012 年 12 月 4 日,一架联合航空公司的航班在遇到电力问题后被迫紧急降落在新奥尔良 [2],最初被认为是机械问题,但后来发现是由于电源面板主板上的电弧引起的。2012 年 12 月 13 日,一架卡塔尔航空公司的飞机因类似的电气问题停飞 [3]。几天后,联合航空公司证实其另一架 787 飞机也出现了电气问题 [2]。另一起事件涉及 2013 年 1 月 9 日的制动诊断系统误报 [4]。虽然这些故障引发了担忧,但最终停飞还是由 2013 年 1 月相隔 10 天发生的两次灾难性电池故障引起的。2013 年 1 月 7 日,一架停飞的 787 飞机发生电池起火。一名机械师注意到辅助动力装置 (APU) 发生电源故障,随后辅助电池端子冒出火焰和烟雾。快速释放旋钮熔化阻碍了第一时间响应,但电池大火最终被扑灭。一名消防员在电池泄压时被烧伤 [5]。2013 年 1 月 16 日,全日空运营的一架 787 飞机发生电池故障。此次故障导致飞行员在日本香川县高松机场紧急降落。据全日空航空公司副总裁 Osamu Shinobe 称,“驾驶舱内发出电池警报,并在驾驶舱和客舱内检测到异味,(飞行员)决定紧急降落”[6]。日本检查人员发现辅助电池系统可能接线不当 [7],这进一步引发了人们对其他系统是否安装正确的疑问。
由于普克尔斯效应和克尔效应的结合,电光 (EO) 聚合物的折射率可以通过外部电场改变。在由基质聚合物和嵌入的 EO 发色团组成的客体-主体系统中,普克尔斯效应依赖于可电极化的 EO 发色团的优先空间取向,这通常是通过在施加外部场的同时在高温下极化 EO 聚合物材料而引起的。EO 发色团由通过 π 电子共轭桥相互作用的电子给体和受体基团组成,其特性是 EO 聚合物设计的重要因素。为了最大程度地发挥普克尔斯效应,具有高玻璃化转变温度和分子尺寸相对较大的 EO 发色团的聚合物具有优势,因为它们可以提供最佳的取向稳定性 [ 1 ],这不仅在客体-主体系统中实现,而且在 EO 发色团与主体聚合物共价结合的材料中也实现了 [ 2 ]。在极化过程中,通过热 [ 3 ] 或光化学 [ 4 ] 交联主体聚合物也可提高取向稳定性。电光聚合物在电信领域的应用已被广泛探索 [ 5-7 ],其快速时间响应、低光损耗、高电光活性、稳定性和易于加工等特点已被用于空间光调制器 (SLM) 的开发 [ 8 ]。因此,最近的大部分研究活动都集中在开发近红外波长范围的电光聚合物 [ 9-12 ]。虽然关于可见光范围的电光聚合物的报道相对较少,但此类材料的未来应用可能在于可调光学滤波器和超声波的光学检测,例如用于生物医学光声 (PA) 成像研究的可调法布里-珀罗 (FP) 传感器 [ 13-16 ]。对于此类应用,需要在可见光波长区域具有高度透明性的新型电光聚合物。传统的近红外 EO 发色团虽然通常具有较高的
抽象的抽水储存厂(PSP)被认为是具有低CO 2足迹的批量存储能源最成熟和最可靠的技术。随着可变可再生能源和电源设备的大规模整合,传输系统操作员(TSO)需要更大的灵活性,以确保电能的安全供应。从一家发电公司的角度来看,这代表了收入来源的多元化,因为作为快速频率服务倾向于出现的新市场。,尽管他们可以通过消耗或提供能源来平衡网格功率,但PSP的主要缺点是他们的低时间响应,使他们无法获得这些新的报酬机制。使用电池或超级电容器等技术的技术,使用诸如独立的储能系统(ESS)杂交水力发电厂,以提高PSP的灵活性并解锁提供动态辅助服务的一种考虑的解决方案之一。但是,水电站和环境限制中可用的少量空间可能会使这种解决方案难以访问。传统上,可逆PSP与固定速度机一起使用。静态频率转换器(SFC)通常用于在泵模式下启动组。从这个角度来看,拟议的论文提出了增强静态转换器(E-SFC)的创新概念。它是将ESS直接集成到工厂的SFC中,以使用电源转换器的使用使用。纸张的组织如下。在第3节中,暴露了协同控制方法操作混合动力厂的需求。与与工厂中型电压网格耦合的传统EST相比,它还提供了减少总体资本支出的机会。第1节提出了水力发电厂的灵活性,以适应不断增长的需求和全球新兴的辅助服务。在第2节中,SuperGrid Institute杂交PSP的创新解决方案,并在未来的电力市场中保持了现有的水力发电机队的关键作用。第4节描述了PSP在LOOP(PHIL)测试钻机中实时功率硬件杂交的实验结果。最后,第5节结束并突出了所提出的解决方案的优势。