a型光子晶体具有更高的折射率对比度的周期性调制,从而带来了独特的光子带隙。在这项工作中,通过有限差分时间域(FDTD)方法研究了薄膜硅太阳能电池的光学性能。分布的bragg repetor(dbr)和纳米词被整合为背面反射器,该反射器认可硅太阳能电池中的光子模式。由于较高的光谱区域吸收有限,光捕获方案在太阳能电池中起关键作用。为此,使用具有数值模拟的光子射线理论来研究各种硅太阳能电池结构,以更好地吸收光吸收。此结果表明与参考细胞相比,DBR和纳米射击的结合能力,并产生高度相对增强的59%,而参考细胞认可了Fabry-Perot共振和光伏设备中的指导模式。这些结果显示出具有增强光吸收的薄膜硅太阳能电池的希望。k eywords dbr,纳米摩擦,硅,薄膜,fdtd f或citation dubey R.S.,Saravanan S.在薄纤维硅太阳能细胞中分布的bragg的反射和纳米旋转的影响。纳米系统:物理。化学。数学。,2022,13(2),220–226。
摘要 — 由于组织外观的变化,包含病理的纵向脑磁共振成像 (MRI) 扫描的配准具有挑战性,这仍然是一个未解决的问题。本文介绍了第一个脑肿瘤序列配准 (BraTS-Reg) 挑战,重点是估计同一患者被诊断为脑弥漫性胶质瘤的术前和随访扫描之间的对应关系。BraTS-Reg 挑战旨在为可变形配准算法建立一个公共基准环境。相关数据集包括去识别化的多机构多参数 MRI (mpMRI) 数据,根据通用解剖模板针对每次扫描的大小和分辨率进行整理。临床专家已经对扫描中的标志点生成了大量注释,描述了时间域内不同的解剖位置。训练数据以及这些基本事实注释将发布给参赛者,以设计和开发他们的注册算法,而验证和测试数据的注释将由组织者保留,并用于评估参赛者的容器化算法。每个提交的算法都将使用几个指标进行定量评估,例如中位数绝对误差 (MAE)、稳健性和雅可比行列式。
ECE3111。系统分析和设计。(4个学分)使用频率和时间域方法对控制系统进行建模,分析和设计。微分方程,传输函数,信号流图和连续和离散时间系统的状态变量表示。非线性系统的线性化。二阶系统的瞬态和频率响应。线性系统具有反馈的稳定性; Routh Hurwitz,根源基因座,Bode和Nyquist方法。 可控性和可观察性。 用于分析线性系统的计算方法。 基于团队的设计项目涉及建模,经典补偿器设计和状态可变反馈设计。 注册要求:ECE 3101或BME 3400;数学2210Q,可以同时进行。 仅向工程学院的学生开放。 查看类(https://catalog.uconn.edu/course-search/? 详细信息和代码= ECE%203111)线性系统具有反馈的稳定性; Routh Hurwitz,根源基因座,Bode和Nyquist方法。可控性和可观察性。用于分析线性系统的计算方法。基于团队的设计项目涉及建模,经典补偿器设计和状态可变反馈设计。注册要求:ECE 3101或BME 3400;数学2210Q,可以同时进行。仅向工程学院的学生开放。查看类(https://catalog.uconn.edu/course-search/?详细信息和代码= ECE%203111)
帕金森氏病(PD)是一种神经系统疾病,需要尽早诊断以进行有效管理。机器学习(ML)已成为增强PD分类和诊断准确性的强大工具,尤其是通过利用可穿戴传感器数据。这项调查全面审查了用于对帕金森震颤进行分类的当前ML方法,评估了各种震颤数据采集方法,信号预处理技术以及跨时间和频域跨时间域的特征选择方法,突出了震颤分类的实际方法。该调查探讨了现有研究中使用的ML模型,从传统方法(例如支持向量机(SVM)和随机森林)到先进的深度学习体系结构,例如卷积神经网络(CNN)和长期短期记忆网络(LSTM)。我们评估了这些模型在考虑其优势和局限性与PD相关的震颤模式分类中的功效。此外,我们讨论了当前研究中的挑战和差异,以及使用可穿戴传感器数据应用ML诊断ML的更广泛挑战。我们还概述了未来的研究指示,以推动PD诊断中的ML应用程序,从而为研究人员和从业人员提供见解。
摘要:在这项工作中,我们报告了基于TIO 2 @GaO x n y -ag异质结构的基于高性能的紫外线可见(UV-VIS)光电探测器。Ag颗粒被引入TIO 2 @GaO X n y,以增强异质结设备的可见光检测性能。在380 nm处,TIO 2 @gao x n y -ag的响应率和探测率分别为0.94 A/W和4.79×10 9 Jones,它们在580 nm处增加到2.86 A/W和7.96×10 10 Jones。响应的上升和下降时间分别为0.19/0.23和0.50/0.57 s。唯一的,在580 nm处,制造的设备的响应性比基于Tio 2,Ga 2 O 3和其他异质界的光电探测器高1-4个数量级。TiO 2 @gao x n y -ag杂结型装置的出色光电特性主要归因于金属 - 高中 - 微米 - 金属中的异质结的类型结构的协同效应,而不是有效地促进了成立式的ag级,而不是有效地促进了ag的等化速率。它被有限的差异时间域法(FDTD)模拟和光电测量所照亮。具有高效率检测的TiO 2 @GaO X N Y -AG阵列是适合在节能通信,成像和传感网络中应用的候选者。
在本文中,提出了基于混合域的深度学习(DL)神经系统,以从脑电图记录(EEG)记录中解释手部运动制备阶段。该系统利用从时间域和时频域中提取的构建,作为混合策略的一部分,以区分暂时窗口(即,EEG时期)前面的手部副群(开放/关闭)和休息状态。对于每个EEG时期,分别通过波束成形和连续的小波变换(CWT)估算了运动皮层中相关的皮质源信号和相应的时频(TF)图。设计了两个卷积神经网络(CNN):具体而言,第一个CNN在时间(T)数据的数据集(即EEG来源)上进行了训练,并被称为T-CNN;第二个CNN通过TF数据数据集(即脑电图源的TF-MAP)进行了训练,并称为TF-CNN。分别从T-CNN和TF-CNN中提取的两组特征和TF-特征分别在单个特征向量(表示为TTF-Features矢量)中串联,该功能用作输入,用于输入标准的多层clas-si i sii-siie-siifination-Filefips。实验结果表明,与基于时间和仅频率的基准基准方法相比,我们所提出的杂种域DL方法的性能有了显着的性能提高,达到76.21±3.77%的平均准确性。
面向服务架构SOA,本地服务物理海陆空交通网络均基于能源网格+服务+平台而开发,远程服务采用模块化的Web服务应用程序接口,ITSM管理多种传感器的大数据存储,实现数据压缩、采集和监控,并在必要时发出警报,完成服务对象的处理和配置管理对于此服务接入分布式企业服务总线(ESB),在网络层交换机上进行拓扑发现,具有所辖子网的拓扑关系,并及时显示各种网络拓扑结构引入服务管理。对于此服务接入分布式企业服务总线(ESB),在网络层交换机上进行拓扑发现,具有所辖子网的拓扑关系,并及时显示各种网络拓扑结构引入服务管理。不同服务对象的接口考虑了用电设备的时变特性,系统提供了各个用户对无线资源的使用情况,并从时间域的角度分析对OFDM符号的时间延长,将大数据信号转换为并行数据流。从频域角度看,就是利用频率选择性信道组成一组并行的信道接口,为优先提交应用的用户接口分配动态资源。
我们开发并通过实验证明了一种动态多原子系统的完整分子框架量子断层扫描 (MFQT) 方法。我们通过完整表征氨 (NH 3 ) 中的电子非绝热波包来举例说明这种方法。该方法利用能量和时间域光谱数据,并生成系统的实验室框架密度矩阵 (LFDM),其元素是群体和相干性。LFDM 完整表征了分子框架中的电子和核动力学,生成了任何相关算符的时间和方向角相关期望值。例如,可以构建时间相关的分子框架电子概率密度,从而生成有关分子框架中电子动力学的信息。在 NH 3 中,我们观察到电子相干性是由核动力学引起的,核动力学以非绝热的方式驱动分子框架中的电子运动(电荷迁移)。在这里,核动力学是旋转的,非绝热科里奥利耦合驱动相干性。有趣的是,核驱动的电子相干性在较长的时间尺度上得以保持。总体而言,MFQT 可以帮助量化电子和核自由度之间的纠缠,并为超快分子动力学、电荷迁移、量子信息处理和最优控制方案的研究提供新途径。
节能窗口用于增加立面的热绝缘。这种绝缘窗口包含超薄的多层,透明的银色涂层,充当红外镜,可大大降低通过建筑物内部辐射发生的热损失。这些所谓的低发射涂层彻底改变了建筑物的隔热场,但也降低了太阳热增益系数,从而降低了冬季节能的潜力。在寒冷的气候下绝缘窗户应在EM波的传播中实现选择性行为。理想情况下,应该传输太阳能并反映中红外辐射,从而减少建筑物的加热需求。本科学论文介绍了基于有限差分时间域(FDTD)的数值研究,该研究重点介绍了银等离子体方形纳米霍尔阵列的光传递特性,并探讨了它们在绝缘窗口中的潜在应用。发现,周期性为350 nm且线宽为50 nm的纳米尔阵列具有出色的特性,并代表了在低E涂层中获得高太阳热增益的好候选者。这些发现有助于理解纳米荷尔阵列中的等离子效应,并提供有关此类结构在开发高级绝缘窗口中具有增强光学性能的实际应用的见解。
摘要 - Qubits是量子处理器的基本构建块,量子处理器需要Giga Hertz频率范围内的电磁脉冲和纳秒频率的延迟,以进行控制和读数。在本文中,我们解决了与用于控制和测量超导码头的室温电子相关的三个主要挑战:可伸缩性,直接Mi-crowave合成和一个固定的用户界面。为了应对这些挑战,我们开发了基于ZCU111评估套件的系统。SQ-CARS设计为可扩展,可配置和相位同步,提供多数控制和读数功能。该系统提供了交互式Python框架,使其对用户友好。通过确定多个通道的确定性同步来实现对较大Qubits的可伸缩性。该系统支持从4到9 GHz的第二个Nyquist区域技术直接合成任意矢量微波脉冲。它还具有板载数据处理,例如可调的低通滤波器和可配置的旋转块,可实现锁定检测和量子实验的低延迟活动反馈。通过板载Python框架可以访问所有控制和读数功能。为了验证SQ-CARS的性能,我们进行了各种时间域测量值,以表征超导式的Transmon Qubit。我们的结果与类似实验中常用的传统设置进行了比较。通过确定控制和读取通道的确定性同步,以及用于编程的开源方法,SQ-CARS为具有超导码头的高级实验铺平了道路。