无监督的域适应性在将知识从标记的源域转移到未标记的目标域,在时间序列应用中起关键作用。现有的时间序列域适应方法要么忽略频率特征,要么平等地处理时间和频率特征,这使得充分利用这两种功能的优势变得具有挑战性。在本文中,我们深入研究了可传递性和可区分性,这是传递表示学习中的两个至关重要的特性。可以洞悉频率特征在特定域内更具歧视性,而时间特征则在跨域上显示出更好的可传递性。基于发现,我们提出了一个dversarial co-co-co-n n etworks(acon),以通过协作学习方式在三个方面通过协作学习方式来增强可转移的表示:(1)考虑到时代的多个过度差异,提出了多个频率频率特征学习,以增强频率特征的辨别能力; (2)提出了时间域互助学习,以增强源域中时间特征的可区分性,并提高目标域中频率特征的可传递性; (3)域对抗学习是在时间频率特征的相关子空间中进行的,而不是原始特征空间,以进一步增强这两个特征的可传递性。在广泛的时间序列数据集和五个常见范围内进行的广泛实验证明了ACON的最新性能。代码可从https://github.com/mingyangliu1124/acon获得。
简介。单光子源对量子计量学[1]的应用至关重要,安全量子通信[2]和光学量子计算[3,4]。在固态设备中,可以构造局部光子环境,以将光子的有效集合促进透镜。这可以通过将发射抑制到不需要的方向上,例如在光子晶体[5,6]中,或通过将发射促进到单个模式中,以使远距离的光学材料(例如纳米坦纳)很好地耦合到单个模式[7,8]。这些结构的数值设计通常集中在高质量因子的局部“腔”模式上,因为这些模式显示出明显的初始衰减,并且可以使用较小的仿真量进行计算,从而在实用的运行时进行计算。模拟无法预测频谱广泛,重叠的非腔(通常称为“泄漏”)模式,并且很难从数值差异时间域(FDTD)和限制元素方法(FEM)模拟中提取。了解这些非腔衰减通道的作用对于完全理解光子源行为至关重要,因为它们提供了替代性辐射衰减通道。有效地生成单个光子的流行设计将半导体量子点(QD)嵌入整体微骨腔中[9-11]。在脱离的bragg重新反射(DBR)之间形成DBRS停止带中的空腔模式,并通过将平面结构刻在支柱中来确定侧模式。QD通常是
约瑟夫森隧道结是几乎所有超导电子电路(包括量子比特)的核心。通常,量子比特的结是使用阴影蒸发技术制造的,以减少超导薄膜界面的介电损耗贡献。然而,近年来,亚微米级重叠结开始引起人们的关注。与阴影掩模技术相比,它既不需要角度相关沉积,也不需要独立的桥或重叠,而这些是晶圆级加工的重大限制。这是以在制造过程中破坏真空为代价的,但简化了多层电路中的集成,实现了截然不同的结尺寸,并能够在工业标准化过程中进行更大规模的制造。在这项工作中,我们展示了减法工艺制造重叠结的可行性。在一系列测试接触中,我们发现平均正常状态电阻的老化率很低,在 6 个月内仅为 1.6%。我们通过将结用于超导传输量子比特来评估结的相干性。在时间域实验中,我们发现我们的最佳设备的量子比特寿命和相干时间平均都大于 20µs。最后,我们讨论了我们技术的潜在改进。这项工作为采用先进材料和生长工艺的更标准化工艺流程铺平了道路,并为大规模制造超导量子电路迈出了重要一步。
Josephson隧道连接是几乎所有超导电子电路(包括Qubits)的核心。典型地,使用阴影蒸发技术制造了量子位的连接处,以减少超导纤维界面的介电损耗贡献。近年来,亚微米量表重叠连接开始引起人们的注意。与阴影蒙版技术相比,不需要角度依赖性沉积,也不需要独立的桥梁或重叠,这对于晶圆尺度处理而言是显着的局限性。这是以在制造过程中打破真空的成本,但简化了在多层电路中的集成,实现截然不同的连接尺寸,并可以在工业标准的过程中更大规模地制造。在这项工作中,我们证明了减法过程用于制造重叠连接的可行性。在一系列测试接触中,我们发现6个月内平均正常状态阻力的低老化仅为1.6%。我们通过将它们用于超导式的transmon量子位来评估连贯性。在时间域实验中,我们发现,最好的设备的量子寿命和相干时间平均大于20µs。最后,我们讨论了我们技术的潜在改进。这项工作铺平了迈向更标准化的过程,并具有材料和生长过程,这是大规模制造超导量子电路的重要步骤。
在这项研究中,我们分析了第一个原理计算中2D MOGE 2 P 4的光学,热力学和电子特性。2d Moge 2 P 4显示在NIR -I生物学窗口(750 nm〜1000 nm)中,峰接近808 nm和出色的导热率(63 WM -1 K -1)。有限差分时间域(FDTD)模拟和热模拟表明,2d Moge 2 P 4在低激光功率(0.5 W/cm 2)下具有有效的光热转化,该转换在808nm的运行。理论研究表明,2D MOGE 2 P 4的快速温度升高(ΔT= 24.8°C)在两分钟内,并且在多个激光周期内进行光热稳定性,可达到适合有效光热治疗应用的温度。光热治疗(PTT)是一种新兴的肿瘤治疗技术,它利用光热剂(PTA)将近红外(NIR)光转化为局部热量以进行肿瘤消融。为了提高生物相容性,我们通过分子动力学模拟分析了2D Moge 2 P 4纳米片的卵巢化。在人体温度下的pe节制是稳定的,这表示2d Moge 2 P 4的治疗应用前景。这项研究强调了2D Moge 2 P 4作为PTA的新兴材料的潜力,为实验和临床试验建立了基础。
常规的基于SI的半导体患者的开关频率低,传导损失高和效率低。这些缺点阻碍了电力电子转换器性能的改善。一种有吸引力的解决方案是用基于二氮化衣材料的宽带gap半导体代替基于SI的半导体设备。就用于氢能系统的降低转换器而言,传统的雄鹿电路很难消除输出电流波纹并实现容忍故障的操作。因此,降低功率转换器的拓扑也需要改进。在本文中,提出了基于GAN的基于GAN的降压转换器和氢能系统的控制策略。首先,对常规降压转换器的数学分析进行了澄清为什么它对可靠性和当前连锁反应有局限性。讨论了另一种替代解决方案,但仍然遭受涟漪。为了消除当前的涟漪并增强了耐断层的能力,提供了一种新型的基于GAN的解决方案,并提供了分析和设计。当前的波纹可以完全取消,并且可以完全实现容忍失误的操作。比较与现有解决方案进行。进行了时间域模拟测试。和实验原型是根据增强模式GAN晶体管建立的。实验结果验证了有关当前涟漪取消和动态性能的提议设计的有效性。©2023作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
在预处理步骤中,处理参数根据原始数据和元数据确定(例如CEOS 领导者文件)。在距离压缩期间,可以通过预过滤在方位角上抽取数据以进行快速查看图像处理。方位角处理器使用距离多普勒算法,并根据 RADARSAT-1 数据的要求选择二次距离偏移。用户可以选择图像的输出几何形状是倾斜校正还是非倾斜校正。自动对焦算法用于改进沿轨平台速度估计。处理后的图像针对天线方向图、雷达的沿轨增益变化、方位角和距离参考函数的长度以及斜距进行辐射归一化。使用有源转发器或通过与机构处理的校准数据进行交叉验证,确定了许多可用传感器/模式的绝对校准常数。已经证明,伽马处理器可以保留干涉处理的相位。多视图像由单视复杂图像样本的时间域平均生成。处理相关参数和数据特性保存为文本文件,可以使用商业绘图包显示。支持使用精密轨道(“Delft”、PRC、DORIS)。支持 ASAR 替代极化 (AP) 原始数据处理。对于 PALSAR-1,支持细光束单极化 (FBS)、细光束双极化 (FBD) 以及来自 JAXA(针对科学用户)或 ERSDAC(针对商业用户)的全极化数据处理。此外,还支持 PALSAR-1 ScanSAR 原始数据处理。对于 COSMO-SkyMed,支持所有条带模式的 RAW 数据处理。不支持 Sentinel-1 数据的原始数据处理。
内布拉斯加州已进行了超过 32,000 线公里(20,000 线英里)的 AEM 勘测(图 2)。内布拉斯加州的首次 AEM 勘测于 2006 年和 2007 年由 Fugro Airborne 使用 RESOLVE© 频域电磁 (FDEM) 系统进行,该系统由美国地质调查局承包,用于东内布拉斯加州水资源评估 (ENWRA)(Smith 等人,2008 年)。 Fugro RESOLVE© 于 2008 年和 2009 年再次被北普拉特和南普拉特自然资源区 (NRD) 用于内布拉斯加州西部 (Hobza 等人,2014 年),2009 年被 ENWRA NRD 用于内布拉斯加州东部 (Smith 等人,2011 年),2012 年被美国陆军工程兵团用于内布拉斯加州米德的一个项目。2010 年,SkyTEM 的时间域电磁 (TDEM) 系统、Aeroquest 的 AeroTEM IV 系统和 Geotech 的 VTEM™ 系统在内布拉斯加州西部进行了测试 (Bedrosian 等人,2016 年)。同年,在内布拉斯加州东部进行了地面 TDEM 测试 (Abraham 等人,2011 年)。 TDEM 系统已成为实现测绘目标的有效工具,因此它是自 2013 年以来内布拉斯加州东部和中部使用的唯一系统,包括 2013 年、2014-2015 年、2016 年、2018 年和 2019 年的活动。这些调查使用了丹麦开发的 SkyTEM 系统的几种变体。
Bioen 521-医疗设备的设计这个基于多学科问题的学习模块是设计旨在通过更广泛的实用设计和商业挑战桥接技术知识,并旨在通过案例研究来提高学生在医疗设备设计领域的知识和技能。它将使学生能够利用适当的设计路线来建立对新技术和新兴技术的有效实施策略的批判性理解和意识。Bioen 461- BME中的信号和系统本课程旨在向学生介绍信号和系统分析和操纵的基础知识及其在医疗领域中的应用。本课程还增强了差分计算中的数学知识,并添加了通用的定量分析工具,例如傅立叶分析。课程主题包括:拉普拉斯变换,傅立叶(系列和积分)变换,线性系统的卷积和响应,频率响应,bode图和极地图。采样,离散时间信号;离散时间信号,光谱估计,数据记录和数字过滤器的频率分析;以及通过时间域和频域编码的生物医学信号的压缩。包括生物医学应用的实验室和计算经验。Bioen 442-在本课程中,通信系统和网络简介学生将学习通信系统和网络的重要方法,体系结构和实现。课程主题包括模拟通信系统的分析和设计:AM和FM调制和解调。AM和FM系统中的噪声。数字通信系统:采样,
需要在吉他上产生适当的和弦和声,需要调整或调整字符串。但是,大多数吉他学习者根据听力手动进行调整。这肯定需要很长时间,因为在调整过程中,用户必须反复转动弦旋钮才能获得和谐而精确的音调。尽管当前在Android上有许多吉他调谐应用程序,但在调整过程中,用户必须手动转动String旋钮。本研究旨在创建一种称为“学习吉他和弦”的工具,以自动执行调整过程,并且根据标准吉他弦音调使用快速傅立叶变换(FFT)算法的频率,结果是快速而准确的。fft可以将信号从时域转换为频域,在时间域F(x)中的一系列数字被转换为频域F(u)。使用已执行的黑匣子测试方法考虑测试结果,可以说,基于Android上的快速傅立叶吉他调谐同步设计应用程序可以正确地获得用户输入的频率。此外,还通过将调谐过程与2个应用程序(即绝对吉他和吉他调谐器)进行比较来进行准确测试。从应用程序比较获得的结果证明,学习吉他和弦应用程序中调谐过程的准确性非常好,因为它可以产生与其他应用程序相同的结果。尽管相等的性格尺度是弦乐器最受欢迎的调音技术之一,但也应考虑其他技术,因为它用于各种乐器中。