背景:在法国,已实施针对 Hi 血清型 b (Hib)、肺炎球菌结合疫苗 (PCV) 和 C 群脑膜炎奈瑟菌 (MenC) 的疫苗接种。这些具有不同覆盖率和接受度的干预措施扰乱了疫苗可预防的急性细菌性脑膜炎 (ABM) 的流行病学。方法:我们分析了法国前瞻性监测网络的数据,该网络对 259 个儿科病房登记的 15 岁以下儿童的 ABM 进行了监测(估计全国覆盖率:61%)。从 2001 年到 2020 年,使用分段线性回归估计了疫苗实施的效果。结果:我们分析了 7,186 例病例,主要由脑膜炎球菌 (35.0%)、肺炎球菌 (29.8%) 和 Hi (3.7%) 引起。比较接种 MenC 疫苗前和接种 MenC 疫苗后的趋势,MenC ABM 发病率下降(-0.12%/月,95% CI:-0.17 至 -0.07,P < 0.001),而总体脑膜炎球菌 ABM 没有变化。尽管在没有疫苗接种计划的情况下,MenB ABM 发病率有所下降(-0.43%/月,95% CI:-0.53 至 -0.34,P < 0.001),但 68.3% 的脑膜炎球菌 ABM 涉及 MenB。PCV7 建议实施后,肺炎球菌 ABM 发病率没有变化。相比之下,改用 PCV13 后,发病率显著下降(-0.9%/月,95% CI:-1.6 至 -0.2%,P = 0.01)。 2014 年 5 月后,出现了反弹(0.5%/月,95% CI:0.3–0.8%,P < 0.001),89.5% 为非 PCV13 疫苗血清型。2017 年 6 月后,Hib ABM 发病率上升。结论:法国引入 PCV7 和 MenC 疫苗,疫苗接种速度慢,覆盖率低,与覆盖率最佳时从 PCV7 转换为 PCV13 相比,影响不大。我们的数据表明,MenB 和下一代 PCV 可以预防法国大部分 ABM 发病率。
。cc-by 4.0国际许可证是根据作者/资助者提供的,他已授予MedRxiv的许可证,以永久显示预印本。(未通过同行评审认证)
抽象时间序列异常检测曾经以一种基本分析方法存在。早期序列异常检测技术主要是统计和机器学习。对于深度神经网络的实际过程,实验者不断地探讨了深度神经网络在异常检测任务中的结果,比传统方法更有帮助。传统模型使用指挥机器学习算法。在拟议的应用程序中,组织和注释如此大量的数据集是具有挑战性的,耗时的或太昂贵的,并且需要从该领域的专业人员学习专业化。因此,对于研究人员和从业者来说,异常检测已成为一个重大挑战。异常检测是指检测异常数据实例的过程。在此分析中,我们为时间序列数据中的异常检测提出了一个无监督和可扩展的框架。所提出的技术是在各种自动编码器上建立的。一种深厚的,富有生产力的模型,将各种信念与深度学习结合在一起。此外,还为时间序列数据执行了实时分析。我们使用LSTM网络来处理,进行预测和基于时间序列数据进行分类。关键字:时间序列,深度学习,神经网络,异常检测,LSTM,深神经网络,无监督学习
对随机和不规则抽样的时间序列进行建模是在广泛的应用中发现的一个具有挑战性的问题,尤其是在医学中。神经随机微分方程(神经SDE)是针对此问题的有吸引力的建模技术,它可以将SDE的漂移和扩散项与神经网络相关。但是,当前用于训练神经SDE的算法需要通过SDE动力学进行反向传播,从而极大地限制了它们的可扩展性和稳定性。为了解决这个问题,我们提出了轨迹流匹配(TFM),该轨迹以无模拟方式训练神经SDE,通过动力学绕过反向传播。TFM利用从生成建模到模型时间序列的流量匹配技术。在这项工作中,我们首先为TFM学习时间序列数据建立必要条件。接下来,我们提出了一个改善训练稳定性的重新聚集技巧。最后,我们将TFM适应了临床时间序列设置,从绝对性能和不确定性预测方面,在四个临床时间序列数据集上的性能提高了,这是在这种情况下的关键参数。
可靠的脑电图(EEG)信号获取对于医疗疾病,脑机构界面(BCIS)和神经科学研究至关重要。然而,心电图(ECG)和电解图(EOG)伪像经常污染EEG记录,损害数据质量和解释性。传统的删除方法可能会扭曲脑电图信号,或需要其他传感器进行ECG和EOG获取。本研究使用多元预测方法将删除伪像作为回归任务,从EEG数据本身重建ECG和EOG信号。我们的方法在两个独立数据集上进行了严格评估,用于ECG和EOG信号,并在不同个体的未见数据上进一步验证。使用平方误差(MSE),平均绝对误差(MAE)和峰值信噪比(PSNR)评估性能。我们的方法实现了与使用实际的ECG和EOG记录的常规方法相媲美的方法,证明了使用原始EOG记录清洁清洁的脑电图和脑电图之间的PSNR为39 dB。这使我们的方法成为经济高效且非侵入性的替代方案。这些发现提出了脑电图噪声过滤研究的有希望的新方向。
时间序列的预测是所有涉及时间订购观察的所有行动的决策和科学推论的基础。实际上,可以说出过去数据(无论是明确或隐式)的概率预测,可以说是每个人类决定的基础[1-5]。在工业和科学环境中,时间序列的预测传统上涉及对任何一种统计模型(例如Arima,Garch,State Space模型等)进行监督培训;有关评论的定制动力学模型,请参见[6,7],基于领域特定的知识,或者是最近对基于深度学习的方法进行培训或针对特定培训的特定预期的方法(请参阅特定的预期)(请参阅A a a a a a [8]。虽然这些方法一直构成了时间序列分析的基础,但直到现在,关键的挑战和局限性仍然存在:统计模型通常无法描述和捕获数据基础的潜在过程,并掌握了他们的预测效用;开发专门的问题特定模型需要在人类的时间和资源上进行大量投资;在单个数据集上训练的经过培训的有监督的深度学习方法通常仅在数据丰富的制度中有用,并且对其他问题的推广不佳。
准确性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2个数据集。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 3 iforecast。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>2个数据集。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 iforecast。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 iforecast-ttsaautomom。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 iforcast-ttscarart。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 iforcast-ttslstm。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5滚动灯。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 tts.automll。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 tts.caret。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。9
概念验证的目标是将这个神经网络集成到 SDS 采集单元 XMA 中。XMA 是一个模块化采集系统,旨在灵活适应仪表工程师的需求。它有助于从各种来源(模拟、CAN、ARINC、以太网、视频)收集和处理飞行数据。XMA 有一个相当于 OBC 的功能,称为 OBP 模块(机载处理)。这个小模块可以添加到 XMA 堆栈中,允许任何用户嵌入自己的算法。该模块基于 SoC(片上系统)Xilinx Zynq 7020,用户可以访问系统部分 (PS) 来运行用 C 编写的自己的算法。OBP 模块可以与其他模块(如 ANA 模块)通信,以访问从传感器获取的信号,或与 ETH 和 CPE 模块通信,以通过以太网和/或 PCM 流输出数据。使用 OBP 的 CPU 和用户空间相对简单。借助 Safran Data Systems 提供的 SDK,我们可以用 C 语言开发和运行任何程序。但是,我们的模型目前使用 Python 在 PC 上进行推理。
摘要时间序列分析是各个领域的关键组成部分,例如财务,经济学,气候科学和医疗保健,在该领域中,准确的预测和模式识别至关重要。这项研究探讨了使用Google股票价格作为案例研究,探讨了复发性神经网络(RNN),尤其是长期记忆(LSTM)网络的应用,特别是短期记忆(LSTM)网络。该研究始于全面的文献综述,强调了RNN体系结构,其理论基础以及时间序列预测中的多样应用的发展和进步。从方法论上讲,本研究概述了所采用的数据预处理技术,包括将数据集缩放和将数据集划分为培训和测试集。RNN模型体系结构经过精心设计,具有多个LSTM层和辍学的正则化,以防止过度拟合并增强模型鲁棒性。使用不同的指标(MAE,MSE,RMSE)对模型进行训练和评估。经验结果证明了RNN模型在捕获时间依赖性并产生准确的股票预测方面的功效。
AU:请确认所有标题级别均正确表示:我们如何才能弄清楚不同微生物在微生物群落中是如何相互作用的?为了结合理论模型和实验数据,我们经常将系统平均动力学的确定性模型与平均数据拟合。然而,在平均过程中,数据中的大量信息会丢失——而确定性模型可能无法很好地表示随机现实。在这里,我们基于实验和模型都是随机的想法开发了一种微生物群落推理方法。从随机模型开始,我们不仅推导出平均值的动力学方程,还推导出微生物丰度更高统计矩的动力学方程。我们使用这些方程来推断最能描述生物实验数据的相互作用参数的分布——从而提高可识别性和精度。推断出的分布使我们能够做出预测,同时也能区分相当确定的参数和现有实验数据无法提供足够信息的参数。与相关方法相比,我们推导出也适用于微生物相对丰度的表达式,使我们能够使用传统的宏基因组数据,并解释了随着时间的推移无法追踪单个宿主而只能追踪复制宿主的情况。