大多数当代死亡率模型都依赖于推断趋势或过去的事件。但是,气候变化将受到人口动态的影响,尤其是温度对死亡率的影响。 在本文中,我们引入了一种新型方法,以使用多人口死亡率模型对预计死亡率进行影响。 这种方法将随机死亡率模型与气候流行病学模型结合在一起,预测由于每日温度波动而导致的死亡率变化,无论是过度还是不足。 这种方法的重要性在于它通过利用气候模型的温度预测来破坏死亡率预测的能力,并评估这种未指定的危险因素对常规死亡率模型的影响。 我们使用性别分层的法国数据说明了这种提出的死亡率模型,重点是过去的温度和死亡率。 利用各种IPCC场景中的气候模型预测,我们研究了与温度有关的预期寿命的收益和损失以及极端热浪引起的额外死亡率,并通过在预测间隔中评估这一新的风险因素来量化它们。 此外,我们分析了法国大都会的地理差异。但是,气候变化将受到人口动态的影响,尤其是温度对死亡率的影响。在本文中,我们引入了一种新型方法,以使用多人口死亡率模型对预计死亡率进行影响。这种方法将随机死亡率模型与气候流行病学模型结合在一起,预测由于每日温度波动而导致的死亡率变化,无论是过度还是不足。这种方法的重要性在于它通过利用气候模型的温度预测来破坏死亡率预测的能力,并评估这种未指定的危险因素对常规死亡率模型的影响。我们使用性别分层的法国数据说明了这种提出的死亡率模型,重点是过去的温度和死亡率。利用各种IPCC场景中的气候模型预测,我们研究了与温度有关的预期寿命的收益和损失以及极端热浪引起的额外死亡率,并通过在预测间隔中评估这一新的风险因素来量化它们。此外,我们分析了法国大都会的地理差异。
最新的自然语言基础模型和计算机视觉基础模型的激增促进了各个领域的创新。受到这一进展的启发,我们探讨了基础模型在智能农业中预测的时间序列的潜力,这是一个经常受到有限数据可用性困扰的领域。具体来说,这项工作提出了一种新的TimeGPT应用,TimeGPT是一种最先进的时间序列基础模型,以预测土壤水潜力(𝜓土壤),这是通常用于灌溉建议的现场水状态的关键指标。传统上,此任务依赖于各种输入变量。我们探索了TimeGPT预测土壤的能力:(𝑖)零拍设置,(𝑖𝑖)仅依靠历史性𝜓土壤测量值的微调设置,以及(𝑖𝑖𝑖)微调的设置,我们还为模型添加了外源变量。我们将TimeGPT的性能与已建立的SOTA基线模型进行了比较,以预测土壤。我们的结果表明,TimeGPT仅使用历史𝜓土壤数据实现竞争性预测准确性,从而强调了其在农业应用中的显着潜力。这项研究通过实现传统上依赖广泛的数据收集和领域实验的预测任务,为农业可持续发展的基础时间序列模型铺平了道路。
1。处理顺序依赖性:股票市场数据本质上是顺序的,每个数据点取决于先前的数据点。lstms可以通过维护内部状态并选择性地记住或忘记以前的时间步骤中的信息来捕获数据中的远程依赖关系。
动机。给定一个字符串S,最小化方案是由三重(k,w,o)定义的算法,该算法从字符串s采样了k -mers(k -long substring)子集的子集。具体来说,它根据s中w连续k -mers的每个窗口中的o来采样最小的k -mer。由于连续的窗口可以采样相同的k -mer,因此采样的K -mers的集合通常比s小得多。这使最小化器成为多种工具,可在生物信息学中减少多个应用程序的内存足迹和处理时间,例如序列比较,组装,压实的de bruijn图形结构和序列索引。更一般地,我们考虑尊重窗口保证的基因带抽样算法:必须从连续k -mers的每个窗口中对至少一个k -mer进行采样。作为采样k -mer的绝对位置在s中的绝对位置唯一识别,我们可以将采样算法的密度定义为不同采样位置的比例。良好的方法具有低密度,通过尊重窗口保证,将限制为1 /w。但是,很难设计具有最佳密度的序列敏捷算法。实际上,通常使用伪随机哈希函数实现O级O,以获得所谓的随机最小化器。此方案非常易于实施,即使以流方式进行计算也非常快,并且易于分析。然而,它的密度几乎距离下限的大窗口几乎有2倍。先前的工作集中在理论和实践中,与随机最小化的密度相比,其密度较低的方法。尽管如此,这些方法仍然很难分析和直观地理解,并且并不总是像随机最小化器那样通用。
Atharva Vijay Raghorte 1,Paras Dilip Ghugal 2,Aditya Vasandani 3,Shiwali Charjan 4,Gandhar Khalale 5摘要时间序列预测在推进生物人工智能(Gen AI)模型的预测能力方面起着至关重要的作用。通过利用对时间模式和依赖关系的理解,AI系统可以增强其在自然语言处理(NLP)和图像产生等不同领域的能力。这项全面的审查旨在探讨时间序列预测对提高AI产出的质量和一致性的深刻影响。了解时间序列预测如何有助于NLP和图像产生等领域的AI代模型的性能,对于释放其全部潜力至关重要。然而,时间序列与Gen AI的整合提出了挑战,例如计算复杂性和影响模型输出的偏见。应对这些挑战对于确保准确和可靠的结果至关重要。未来的研究方向应着重于优化计算需求,减轻偏见并增强AI Gen Systems利用时间序列的伦理含义,以进一步提高其能力并确保在各个领域的可信赖应用。时间序列预测对Gen Gen Model绩效的影响如何理解时间模式如何改善AI代决策?理解时间模式大大丰富了生成人工智能(Gen AI)的决策能力,尤其是在跨越各个领域的预测场景中,例如股票市场趋势,零售需求和用电使用优化[1]。通过将Gen AI应用于时间序列数据的分析,这些系统不仅可以以更高的准确性预测未来的事件,而且还可以适应时间趋势的变化,从而使它们更具弹性和灵活性[1]。通过使用先进的神经网络体系结构(例如基于变压器的模型)进一步增强了这种适应性,该模型通过利用多头自我注意力的机制来掌握时间依赖性的细微差异[2]。此外,在广泛的时间数据集上预先培训的基础模型的集成使Gen Gen可以在不同域中传输学习的模式,从而提高其概括能力并启用准确的预测,即使对于训练阶段中未遇到的数据集也是如此[1]。因此,在AI中的时间模式的理解和应用不仅提高了预测的准确性,而且还有助于开发更容易解释和可靠的模型,为在广泛的领域中更智能的决策过程铺平了道路[2]。
时间序列模型专门研究数据流中的观测和多个特征之间的相互作用之间的时间依赖性。在过去的十年中,深度学习模型(DL)模型在compoter愿景和自然语言处理中取得了前所未有的成功已稳定地渗透到时间序列任务上。从复发的神经网络到变形金刚,建筑设计方面的新进步改善了功能和性能。尽管取得了成功,但我确定了采用当前最新方法(SOTA)方法的挑战,包括处理分配变化和缺少数据,计算复杂性和可解释性。DL模型的成功通常归因于其自动发现有用数据表示的能力。多元时间序列模型涉及具有许多时间序列和时间观察的高维对象。但是,它们经常表现出强烈的时间依赖性和功能间关系。在本论文中,我建议设计DL架构和算法,以预测和异常检测任务,以利用这些依赖性来诱导满足所需属性的表述有效学习,这些属性可以(i)改善模型的性能,(II)通过促进域的良好性来改善域的稳健性,以降低量表性,以降低量准化的量表,以降低量准化。完成的工作分为三个部分,展示了七种新颖的模型类型和算法,这些算法在各种任务中实现了最新的性能,同时解决了关键的采用挑战。在第一部分中,我探讨了动态的潜在空间原理和设计潜在的时间表示,以制作可靠的异常检测和预测模型。在第二部分中,我为基于新型的非线性频率分解与小波理论的连接提供了一种新颖的可扩展且可解释的预测模型。它还具有两种扩展,用于将多元外源协变量用于高影响力结构域,包括能量和医疗保健。最后,在第三部分中,我提出了一项关于模型设计和数据特征的支持条件的大规模研究,用于在时间序列任务上的预训练模型的可传递性。
社交活动可能会对参与协作社交情境的人的大脑产生影响或反应。本研究评估了一种新方法 Tigramite,用于对此类情境中人的前额皮质 (PFC) 之间的定向因果关系进行时间域分析。实验情境采用超扫描脑电图,个人以手指敲击节奏相互引导和跟随。这项结构化任务持续时间长,前额皮质中发生脑间因果反应的可能性很高。Tigramite 是一种基于图形的因果发现方法,用于识别观察时间序列中的定向因果关系。Tigramite 用于分析 PFC 内部和之间的定向因果关系。在社交互动过程中,可以检测到大脑内部和之间的显著定向因果关系。这是 Tigramite 可以揭示超扫描脑电图时间序列中脑间和脑内定向因果效应的第一个经验证据。这一发现有望利用 Tigramite 在时间域的脑电图上进一步研究社交活动中神经网络的因果关系。
预计财务泡沫的发生具有至关重要的意义,因为它使投资者有能力做出明智的决定并熟练地导致潜在的损失。此外,气泡的预测和识别在实现财务稳定目标方面起着关键作用。鉴于这些考虑因素,本研究论文努力通过将BSADF测试与机器学习算法相结合的方法来解决财务泡沫的挑战。初始阶段涉及在包括STOXX 600指数的所有实体的股票价格内识别气泡,然后将机器学习框架应用于预测气泡值。该研究旨在辨别并纳入所有相关特征以预测气泡,并采用各种神经网络算法来制定预测。随后,研究评估了这些算法的样本外预测准确性。
在线社交网络使信息能够迅速传播到世界各地,在此类平台上表达的观点可能会影响人们的决定。在 COVID-19 大流行期间,许多有影响力的公众人物利用这些社交网络分享他们对为对抗病毒而开发的疫苗的看法。许多有影响力的人鼓励接种疫苗,也有相当多的人对疫苗的有效性表示怀疑和怀疑。这项研究模拟了 11 位有影响力的人的言论对 Twitter 上表达的 COVID-19 疫苗总体情绪的影响。情绪的衡量方法是收集大流行期间关于疫苗的一系列公开推文,并根据 VADER 词典为每条推文分配一个情绪分数。使用了几种模型来分析有影响力的人的言论的影响,包括线性、顺序和基于树的模型。结果是通过基于每个模型的反事实估计构建贝叶斯结构时间序列模型获得的。结果发现,分享鼓励接种疫苗信息的影响者通常会在接下来的 20 天内增加“支持接种疫苗”推文的数量。有影响力的人分享“反疫苗接种”信息有时会导致反疫苗推文数量减少,有时会导致在接下来的 20 天内数量增加。这项研究的结果为疫苗犹豫这一复杂问题以及有影响力的人对疫苗信息的影响提供了初步的了解,并为有关这一问题的公共卫生战略提供了参考。