如果电池容量低于30%,则系统进入待机模式。如果电池容量在可接受的限制范围内,则需要等待特定的时间延迟,并提出启动柴油发电机的请求。需要时间延迟才能同时排除柴油发电机和网络操作的可能性。如果柴油发电机还没有准备好启动,则通知操作员,并且系统以电池模式运行。否则,可以在手动模式和自动模式下启动柴油发电机。启动后,系统将在柴油发电机模式下运行,直到燃油箱用尽燃油或自动驾驶汽车完成任务为止。
静息状态功能性磁共振成像 (rs-fMRI) 的最新证据表明,健康人脑具有时间组织,该组织以非常复杂的时间延迟结构为代表。这种结构似乎是大脑信息流、大脑活动的整合/传播以及信息处理的基础。因此,它可能与高度协调的复杂大脑现象(如意识)的出现有关。然而,在意识状态改变期间,这种结构可能发生的变化仍未得到充分研究。在这项研究中,我们假设由于高阶功能的中断和大脑信息流的改变,意识障碍 (DOC) 患者的自发性大脑活动的时间延迟结构可能会发生变化。我们通过比较 48 名 DOC 患者和 27 名健康对照 (HC) 受试者在静息状态下获得的 fMRI 静息状态数据的时间延迟投影来探索这一假设。结果表明,与 HC 相比,DOC 患者的时间延迟结构有所改变。具体而言,中扣带皮层 (mCC) 内潜伏期的平均值和方向性会随着意识水平的变化而变化。具体而言,mCC 内潜伏期的正值与意识状态的保持有关,而 DOC 患者的负值则与意识水平成比例变化。这些结果表明,mCC 可能在 HC 受试者中作为大脑活动的整合者发挥着关键作用,但这种作用在意识改变的状态下会消失。
摘要 - 在本文中,开发了一种自适应轨迹同步控制器,该控制器是在机器人模型参数(包括非线性参数摩擦术语)中的通信时间延迟和不确定性的情况下将机器人关节轨迹同步到人类关节轨迹的。通过解释人类机器人协作任务中出现的时间延迟,例如,使用图像处理估算人类轨迹或传感器融合以进行轨迹意图估计或计算限制,将控制器同步到人类轨迹。开发的自适应时间延迟同步控制器采用了新的积分并发学习(ICL)基于基于神经网络参数估计的参数更新定律。使用Lyapunov-Krasovskii函数分析证明了同步和参数估计误差的最终有界稳定性。使用人类机器人同步示例提出了蒙特卡洛模拟的结果,以验证所提出的同步控制器的性能。使用人类机器人同步示例提出了蒙特卡洛模拟的结果,以验证所提出的同步控制器的性能。
图 5-9:(a) 10s 周期、(b) 5s 周期、(c) 1s 周期和 (d) 250ms 周期的数据包的时间延迟......................................................................................................................................... 32
- 控制打开电压:控制打开电压:可调节从95.0到140.0 V,以0.1 V增量为0.1 v增量 - 控制关闭电压:控制关闭电压:可调节到95.0到140.0 V,以0.1 V增量 - 关闭和开放时间延迟:关闭和开放时间延迟:关闭和开放时间延迟:确定或反向或反向;可调节从0秒到600秒,以1秒的增量调节。计时器重置可以作为瞬时或集成。- 时间覆盖(经典或增强):时间覆盖(经典或增强):在自动控制模式下,可以将替代的时间应用于电容器库打开和关闭操作。时间覆盖功能考虑开始日期,开始时间,结束日期,结束时间,持续时间,复发模式以及一系列实施替代的事件。在增强模式下,在24小时内可用第二次覆盖。- 温度覆盖:温度替代:在自动控制模式下,温度可以替代,可以在电容器库开放和关闭操作上。温度替代特征考虑了感知的环境温度,并在温度设定点条件上或低于温度的设定条件上实现了覆盖动作(开放,关闭或无)。注意:控制模式限制可以覆盖时间和温度覆盖。
图 3 (A) 根据方程 (11),建模的时间延迟(以秒为单位)与流向距离 x 的关系,其中积分上限为 x,不同的颜色代表不同的偏航角。 (B) 建模的两个涡轮机之间的时间延迟(以秒为单位)与第一个涡轮机的偏航的关系。 对于该测试,涡轮机直径为 100 m,涡轮机轮毂高度也是 100 m,自由流速度为 U ∞ = 7:77 m/s,并通过设定摩擦速度 u ∗ = 0:45 m/s 来确定,然后使用方程 U ∞ =ðu∗lnðzh=z0ÞÞ=0:4 来找到轮毂高度的自由流速度。局部推力系数为 C0T = 4 = 3,尾流膨胀系数由公式确定:kw = u∗ = U∞ = 0:0579
应在传感器耦合到参考杆的两端时进行时间延迟调整,参考杆的传输时间准确已知。5.6 中描述了合适的杆。始终使用相同的技术将传感器放置在参考杆上非常重要。应使用最少量的耦合剂,并将传感器牢牢压在杆的末端。任何其他技术,例如将传感器滑到杆上,都可能产生明显不同的零读数,应避免使用。每次使用设备时、更换传感器时、使用不同的传感器时以及使用不同长度的电缆时,都应调整时间延迟以提供正确的零设置。根据电子电路或电缆的稳定性,可能还需要更频繁地检查零设置。
GLT5009BSI 是一款背照式 (BSI)、时间延迟积分 (TDI)、电荷域 CMOS 图像传感器,像素大小为 5μm,有效分辨率为 9072。该传感器有两个感光带,256 个级和 32
*延迟是指数据测量或设备状态发生变化后,IESO 通信接口上信息可用的时间延迟。+ 数据偏差是指来自同一设备的不同数据或测量的到达时间的变化