CRISPR/Cas9 基因组编辑系统的效率在许多作物中仍然有限。利用强启动子来提高 Cas9 的表达水平是提高编辑效率的常用方法。然而,这些策略也增加了脱靶突变的风险。在这里,我们开发了一种新策略,利用内含子介导增强 (IME) 辅助的 35S 启动子来驱动 Cas9 和 sgRNA 在单个转录本中,通过适度增强 Cas9 和 sgRNA 的表达来提高编辑效率。此外,我们开发了另一种策略来富集高表达 Cas9 /sgRNA 的细胞,通过共表达发育调控基因 GRF5 ,这已被证明可以提高转化效率,并且来自这些细胞的转基因植物也表现出增强的编辑效率。该系统将莴苣(Lactuca sativa)中三个目标的基因组编辑效率从 14–28% 提高到 54–81%,且脱靶编辑效率没有增加。因此,我们建立了一种新的基因组编辑系统,该系统大大提高了目标编辑效率,且没有明显增加脱靶效应,可用于表征莴苣和其他作物中的目标基因。
注意到,对于细胞II(80°C)的过渡点t远低于细胞I(150°C)的过渡点。差异可能是由于细胞II链的灵活性更大。因此,高于t的电导率的明显增加可能主要归因于当前载体的迁移率的增加。我们的兴趣是针对电动分子(纤维方向)和分子间氢键(垂直方向)方向的各向异性DE电导率。图5显示了(在这两个方向上j在1/t绘制的两个方向上的j(tsuga和kaba)在100°C下用4N-HC1处理的值6h。纤维方向的电导率大约是垂直方向的十倍。从图6所示的(j ii j ii j for Cell II)的温度依赖性获得了类似的结果。图7显示了在各种温度下,这两个细胞I(TSUGA)这两个方向的电压电流特性。的结果与图7中的结果相似,在垂直方向上的电压 - 电流曲线与纤维分离中的线性关系相比,电压电流曲线显示出非线性关系。这种非线性效应可能是由于始终存在于poly-
摘要:在电缆中的绝缘层的交联聚乙烯(XLPE)的广泛使用可能归因于其出色的机械和介电性能。为了定量评估热老化后XLPE的绝缘状态,建立了加速的热老化实验平台。极化和去极化电流(PDC)以及在不同老化持续时间下XLPE绝缘裂纹时的伸长率。XLPE绝缘状态取决于断裂保留率(ER%)的伸长率。基于扩展的Debye模型,本文提出了稳定的松弛电荷数量和0.1 Hz的耗散因子,以评估XLPE的绝缘状态。结果表明,XLPE绝缘的ER%随着衰老程度的增长而降低。XLPE绝缘的极化和去极化电流将随着热老化而明显增加。电导率和陷阱水平密度也将增加。扩展Debye模型的分支数量增加,并出现新的极化类型。在本文提出的0.1 Hz处的稳定的松弛电荷量和耗散因子与XLPE绝缘的ER%具有良好的拟合关系,可以有效地评估XLPE绝缘的热老化状态。
1。科学与创新环境(提供了该国的ST&I生态系统的概述)。泰国数量的研究在近几十年来取得了重大进展,以创新为主导的经济,从而通过研发来促进各个部门的增长和竞争力。2020年,泰国在研发上的总支出为2080亿THB。这相当于GDP的1.33%,这是从2011年的0.37%明显增加,并且使其成为东盟第二高。增加主要归因于私营部门的投资(主要来自食品,建筑,电气设备行业)。政府随后宣布将其在研发上的支出增加到2037年的2%和研究人员的数量,私营部门对同样的贡献也是如此。在研究产出方面,泰国自2011年以来的出版物数量增加了一倍,预计将稳步增加(图1)。发表最多的领域与传染病,催化剂和材料,计算科学和算法有关,与物理学有关。在2023年,泰国的全球创新指数为43,在中等收入国家中排名第5,仅在马来西亚和新加坡在东盟超越。它被归类为相对于其发展水平的创新成就,表现高于预期。但是,值得注意的是,尽管近年来专利申请的数量增加了一倍,但仍低于世界平均水平。
排放减少目标以继续我们的进步达到零,我们采用了以下碳减少靶标。我们预测,碳排放量将在未来五年内减少到2028年的262,01 TCO 2E。这减少了19,81%。减少碳减少计划的减少措施与上一年相比,排放量明显增加。英国Elitech的最高排放与上游和下游运输,商务旅行和通勤有关。作为供应商提供的物流,公司在运输管理方面的影响非常有限(即选择车辆),但无论如何都可以采取行动,尽可能改善它。在2023年,传入和随之而来的货物运输显着增加。这解释了范围3排放的增加。同时,Elitech可以激励其员工在安排商务旅行时更加谨慎,并且只有在严格必要的情况下才能继续进行,并为所有劳动力提供一天的远程工作,以使每个工作日通勤少数员工。与基准年(2022)相比,由于结构性和组织变化,范围1和范围2的排放也增加了,这阻碍了去年建议的减少措施的实施。尽管总体上升了,但鉴于2050年净零目标,Elitech仍然坚定地减少其排放。以下简要列出了未来5年将要实施的措施:
黄瓜是在埃及温室下种植的最受欢迎和最喜欢的蔬菜作物之一。进行了一个温室实验,以减少黄瓜移植的根腐。在播种不同浓度的微量营养素,抗氧化剂及其组合之前,将黄瓜种子浸泡,以控制根瘤菌根腐内腐烂。结果表明,在12天后,最高的幼苗含在12天后的73.4%是在以1 ppm浸泡在硒溶液中的黄瓜种子后。在人为感染的锅中,用豆酸钾和硼酸处理的索拉尼种子的植物杆菌具有最高的幼苗林,总苯酚含量明显增加。tartrate与硼酸结合的钾含量显示,索拉尼氏菌的径向生长降低了88.9%。使用高性能液相色谱法测量了由索拉尼菌在补充硼酸的PDA培养基上产生的草酸的最高还原。我们的发现证明了一种有效的方法,可以利用微量营养素和自由基清除剂诱导黄瓜移植对根部腐烂的根源腐烂。关键字:黄瓜,根瘤菌溶剂,抗氧化剂,微量营养素
小鼠和同变物对照(TNF +/ +)的小鼠用于研究内核和转基因T细胞受体(TCRM)模型中的心肌炎。TNF + / - 和TNF - / - 小鼠用α-肌球蛋白重链肽(αMYHC)免疫的小鼠表现出心肌炎的发病率降低,但易感动物在心脏中发生了广泛的炎症。在TCRM模型中,由于心肌病和心脏纤维化,TNF-α的产生有缺陷与死亡率增加有关。我们可以确认TNF-α以及抗原激活的心脏反应效应子CD4 + T(T EFF)细胞有效地激活心脏微血管内皮细胞(CMVEC)的粘附特性。我们的数据表明,除T EFF细胞外,内皮产生的TNF-α还促进了叶核细胞粘附于活化的CMVEC。对两种心肌炎模型的CD4 + T淋巴细胞的分析均显示出心脏,脾和TNF + / - 和TNF - / - 小鼠的血液中T EFF细胞的分数明显增加。的确,抗原激活的TNF - / - T EFF细胞显示长期生存率延长,TNF-α细胞因子诱导的心脏反应性t eff的细胞死亡。
尽管张量网络是模拟低维量子物理的有力工具,但张量网络算法在较高空间维度上的计算成本非常高。我们引入了量子规范网络:一种不同类型的张量网络假设,对于较大的空间维度,模拟的计算成本不会明显增加。我们从量子动力学的规范图 [ 1 ] 中汲取灵感,它由每个空间斑块的局部波函数组成,相邻斑块通过幺正连接相关。量子规范网络 (QGN) 具有类似的结构,只是局部波函数和连接的希尔伯特空间维数被截断。我们描述了如何从通用波函数或矩阵积态 (MPS) 获得 QGN。对于 M 个算子,任何波函数的所有 2 k 点相关函数都可以通过键维数为 O ( M k ) 的 QGN 精确编码。相比之下,仅当 k = 1 时,量子比特的 MPS 通常需要指数级更大的键维数 2 M / 6。我们提供了一种简单的 QGN 算法,用于近似模拟任意空间维度中的量子动力学。近似动力学可以实现时间无关的汉密尔顿量的精确能量守恒,并且空间对称性也可以精确保持。我们通过模拟多达三个空间维度中的费米子汉密尔顿量的量子猝灭来对该算法进行基准测试。
本研究采用理论和实验相结合的方法,研究汽车变速器中使用的电磁阀 (SV) 的可靠性。本研究的目标是使用加速测试来表征 SV 故障,并将结果与新的综合有限元模型 (第 1 部分) 相关联。我们设计和制造了一种定制测试设备,用于同时监控和启动多达四个 SV。该测试设备能够应用受控的占空比、电流和启动频率。SV 还放置在热室中,以便可以精确控制环境温度。该设备实时测量每个 SV 的温度、电流和电压。我们进行了一系列测试,以产生 SV 的重复故障。SV 的故障似乎是由于过热和螺线管线圈中使用的绝缘层故障造成的。电流测试在 100 � C 环境温度、16.8 V 平均峰值电压、50% 占空比和 60 Hz 启动频率下进行。发生故障时,由于螺线管线圈短路,螺线管电阻会下降到明显较低的值。电阻下降会导致平均电流明显增加。绝缘层也会熔化并流出 SV。因此,环境温度和电流的增加被认为会导致 SV 可靠性下降。© 2008 Elsevier Ltd. 保留所有权利。
在北极的快速变暖有可能以甲烷(CH 4)释放大量的碳储存量,从而产生强烈的积极气候反馈。这引起了人们的关注,即在1999年至2006年的大气CH 4负担近零增长之后,此后的增加可能部分与北极排放量增加有关。在背景空气样品中的CH 4的测量提供了有用的直接信息,以确定北极CH 4排放量是否在增加。对大发射变化的一个敏感的一阶指标是极性差异,即极地北部和南部区域(53° - 90°)之间的表面大气年平均值的差异,该平均数跨间隔,但在1992年至2019年没有增加。在2020年至2022年,当全球CH 4负担显着增加,但在1980年代后期的峰值尚未达到峰值时,极性差异已适度增加。为了定量评估北极CH 4排放的定量评估,必须将大气测量与大气示踪模型相结合。基于多项研究,包括一些使用CH 4同位素,很明显,全球大气CH 4负担的大部分增加是由热带地区微生物来源的排放增加所驱动的,自从1983年至2022年我们测量记录开始以来,北极排放并没有明显增加。