使用本海报首先使用比重计测量交付明矾的比重。输入值(中间)。接下来,填写产品数据表中的凝结剂强度。然后,使用秒表和校准圆筒测量化学进料泵速率(下方)。填写数字并使用计算器找到每个彩色框的当前值。最后,将这些值代入底部的公式并使用计算器确定当前剂量。
正如第 2 部分将详细讨论的那样,Alum Creek WAU 源头的 Alum Creek 受到了非点源 (NPS) 污染的影响。州和联邦 NPS 资金现在与符合美国环境保护署 (US EPA) 受损水域流域计划九个最低要素的战略实施规划密切相关。俄亥俄州环境保护署 (Ohio EPA) 建立了非点源实施战略 (NPS-IS) 框架和文档模板,以指导制定符合美国环境保护署九个最低要素的实施计划。这项 NPS-IS 计划解决了 Alum Creek WAU 源头的 NPS 损害问题,该计划由 Tetra Tech, Inc. 根据与 Morrow 县的合同制定。
摘要:使用1%,5%和10%浓度的明矾分析了十个井水样品,以开发细菌载荷,这些明矾被添加到每个100毫升的井水样品中,以确定明矾对enugu州农村和城市地区微生物水的微生物负荷的影响。对井水样品产生影响后,通过可行的细胞计数分析了上清液和沉积物以开发细菌菌落。It was observed that the effect of alum on bacterial load increases as the percentage concentration of the of alum increases, however, further increase in the concentration of alum has no effect on the bacterial load, and this can be observed in well water from Ufuma Achara layout, Agbani Nkanu, Ugbo Paul Abakpa, Ohofia Uwani and Amodu Awkunanaw.另一方面,从1%到5%的明矾浓度对Amaokwe Achara布局的上清液没有影响,但是随着浓度的增加约10%,它开始对上清液和沉积物的细菌负荷产生影响。关键字:明矾,效果,微生物负载,井水,农村地区,市区,上清液和沉积物。版权所有©2023作者:这是根据Creative Commons Attribution 4.0国际许可(CC BY-NC 4.0)分发的开放访问文章,允许在任何非商业用途的媒介中使用,不受限制地使用,分发和再现,以提供原始作者和源头。i ntroduction
摘要——由于人口增长和工业进步,全球对可持续发展的关注度不断上升。因此,人们进行了各种研究,以探索改善环境和利用可再生能源的新趋势。沸石是一种具有分子尺寸微孔的晶体材料。明矾泥是饮用水净化过程中产生的副产品,数量不可避免。本文介绍了沸石用于增强可持续能源存储系统的方法。沸石 (ZSM-12) 是由废明矾泥饼脱水去除多余水分后热分解合成的。ZSM-12 是一种高硅沸石,是一种通过相变材料 (PCM) 增强潜热储能介质的先进应用。进行了包括 XRD (X 射线衍射仪) 和 SEM (扫描电子显微镜) 在内的微观测量,以检查改性明矾泥中沸石 (ZSM-12) 的存在。在中试规模的太阳能存储系统中,添加含沸石的明矾泥 (AS) 的相变材料 (PCM/AS/ZSM-12) 的热性能比纯 PCM 提高了 15%,储存热量达到 89 kJ,而基于石蜡的纯 PCM 的储存热量为 7 kJ。
1. 简介 出血性败血症 (HS) 是经济上最重要的细菌性疾病之一,主要发生在牛和水牛身上。该病是由属于巴斯德氏菌科的革兰氏阴性球杆菌多杀性巴氏杆菌亚种引起的 [1,2]。在印度和非洲,血清型 B:2 和 E:2 分别导致大型反刍动物患上 HS [3],尽管血清型 A:1 和 A:3 也与此有关。感染 HS 的水牛会出现呼吸音、大量流涎、呼吸困难、粘液鼻涕、高烧、食欲不振、烦躁不安、下颌和颈部水肿和发红 [4]。根据第 19 次牲畜普查(2012 年),印度的牛群总数为 2.999 亿头 (http://dahd.nic.in/sites/default/filess/Livestock%20%205_0.pdf)。其中,相当一部分(约 36%,1.087 亿头)是水牛,这使印度成为世界上水牛数量最多的国家。其中近一半(5105 万头)是奶牛,占牛奶总产量的 50% 左右。印度是最大的水牛奶生产国,占世界牛奶总产量的 68% [5]。根据中央邦政府畜牧业部的数据,该邦牛奶产量在全国排名第四(2014-2015 年为 1078 万吨),
很高兴在NSGC AC看到新奥尔良这么多校友。今年对行业领域的许多人都不友善,这也陷入了入门级职位。感谢所有回复我的网络电子邮件的人,以使学生和明矾彼此相关。虽然总是很重要,但在这个市场上甚至更是如此。另外,非常感谢您向研究和教育基金的捐款(在AC上筹集了近1,000美元!)和Jaqueline T. Hecht奖学金基金。您的支持是巨大的,并继续确保我们支持学生的能力。可以随时与任何礼物问题联系。
摘要:背景:甲基苯丙胺使用障碍 (MUD) 是一种日益严重的健康问题,目前尚无 FDA 批准的治疗方法。本系列研究以我们之前开发 MUD 抗甲基苯丙胺 (MA) 疫苗的工作为基础。我们确定了一种配方的效果,该配方包括吸附在氢氧化铝 (明矾) 上的破伤风类毒素 (TT) 与琥珀酰甲基苯丙胺 (TT-SMA) 结合,并与新型 Toll 样受体 5 激动剂恩托莫德结合。方法:给小鼠接种 (0、3、6 周) TT-SMA+明矾和不同剂量的恩托莫德,以确定增强对 MA 免疫原性的最佳剂量。然后使用 MA 诱导的小鼠运动激活来评估功能效果。使用疫苗产生的抗体进行被动免疫的实验测试了其在雄性和雌性大鼠中减弱 MA 诱导的心血管效应和改变 MA 的强化作用的能力,在 MA 诱导的复发药物寻求模型中。结果:在接种 TT-SMA+alum 和 entolimod(1、3 和 10 µg)后 10 周,抗体水平达到峰值。接种疫苗的小鼠与未接种疫苗的小鼠相比,MA 诱导的运动激活显著减弱,抗体水平与行走水平显著相关。被动免疫降低了雌雄大鼠 MA 给药后的平均动脉压,但没有改变心率。被动免疫还减弱了 MA 在雄性和雌性大鼠中恢复已消失的药物寻求行为的能力。结果支持进一步开发这种疫苗以预防 MUD 患者的复发。
有效疫苗的开发长期以来一直是与传染病作斗争的基石。添加到疫苗中以增强免疫反应的传统佐剂在提高疫苗功效方面起着重要作用。纳米颗粒具有独特的物理化学特性,已成为该领域中有前途的候选人。佐剂对于刺激强烈且持续的免疫反应至关重要,尤其是当抗原本身不良免疫原性时。传统的佐剂,例如铝盐(明矾),已经使用了数十年,但其调节特定免疫反应并诱导长期免疫力的能力有限。由于其尺寸很小,表面较大,并且具有封装广泛的生物分子的能力,因此可以设计纳米颗粒以增强先天和适应性的免疫力,从而提高疫苗的有效性。免疫系统的第一道防线,先天免疫反应,在疫苗的疗效中起着重要作用。
图。rAd5-YFV 疫苗与 rYFV 组合(Combo YFV)可为具有预先存在的腺病毒免疫力的 NHP 提供保护,使其免受致命的 CO92 气溶胶攻击。为了诱导预先存在的腺病毒免疫力,将 5 x 10 10 个 Ad5-Empty 病毒颗粒(vp)注射到 NHP 的股四头肌中(第 0 天)。在第 30 天,这些 NHP 用 1 x 10 11 vp 的 rAd5-YFV(气溶胶雾)进行免疫,然后在第 42 天通过肌肉注射途径注射 50 µg rYFV 加强剂(在明矾佐剂中以 1:1 的比例乳化)。仅接受盐水的动物作为对照。在第 85 天,通过气溶胶途径用 CO92 对 NHP 进行攻击,Dp(呈现剂量)范围为 1.32 至 8.08 x 10 7 CFU,并绘制了存活百分比。
3M FC -75 4 4 4 4 1 1 2 1 乙酰胺 4 4 1 2 1 1 3 1 乙酸 (5%) 4 4 4 4 1 1 1 2 丙酮 3 3 1 1 2 1 1 1 苯乙酮 1 2 1 1 3 1 3 3 乙酰丙酮 2 2 2 1 3 1 3 3 乙酰氯 2 2 2 2 3 1 3 3 乙炔 4 2 2 2 3 3 1 3 空气 (100 °C) 2 3 1 1 3 3 1 3 空气 (150 °C) 4 4 4 4 1 3 1 3 空气 (200 °C) 1 1 1 1 3 1 3 3 乙酸铝1 2 1 1 2 2 1 2 溴化铝 1 2 1 1 3 3 1 3 氯化铝(10%) 4 4 4 4 2 1 3 2 氯化铝(100%) 4 4 4 4 1 1 1 1 氟化铝 3 3 3 3 1 1 1 1 硝酸铝 3 2 2 2 1 1 1 1 铝盐 1 2 1 1 1 1 1 1 硫酸铝 3 3 3 3 1 1 1 1 明矾(NH3-Cr-K) 3 2 1 1 1 1 1 2 氨(无水) 3 3 2 2 1 1 1 1 氨(冷,气体) 3 2 1 1 2 1 3 1 氨(热、气态) 4 4 4 4 1 1 3 1 碳酸铵 4 4 4 4 1 1 1 1 氯化铵 2 3 2 3 1 1 1 1 氢氧化铵 3 2 4 1 1 1 3 1 硝酸铵 3 2 4 1 3 2 3 2 过硫酸铵溶液 3 2 3 3 3 1 1 1 磷酸铵(一元、二元、三元) 3 3 2 3 1 1 1 1 铵盐 3 3 1 1 1 1 4 1 硫酸铵 3 3 1 2 3 1 3 1 硼酸戊酯 3 3 1 2 3 1 4 4 氯化戊酯 3 3 3 2 1 1 4 1 戊基氯萘 4 4 4 4 1 1 3 1 戊基萘 3 3 2 3 1 1 3 1 动物油(猪油) 1 1 1 1 2 3 1 2 Aroclor 1248 4 4 4 4 1 3 1 1 Aroclor 1254 4 2 1 1 4 3 1 3 Aroclor 1260 4 4 4 4 3 3 1 3 芳烃燃料 -50% 4 4 4 4 3 3 1 3 砷酸 2 2 2 2 1 2 1 2 沥青 2 3 3 3 3 2 1 3 ASTM 油,n° 1 3 3 1 1 1 1 1 1 ASTM 油,n° 2 3 3 1 1 2 3 1 2 ASTM 油,编号 3 1 1 1 1 1 3 1 1 ASTM 油,编号 4 1