疫苗接种是预防或对抗肿瘤以及其他疾病最有效且最具成本效益的方法之一。1,2 有效的肿瘤疫苗应在佐剂的帮助下诱导广泛的体液反应和细胞免疫反应,包括 CD8 + 细胞毒性 T 细胞 (CTL)、CD4 + Th1 或 Th17 细胞反应。3 – 5 然而,最常用的佐剂铝盐(明矾)通常只能引发强烈的抗体反应,且以 Th2 为偏向,6 并且很少有获准用于人体给药的佐剂能够产生足够的细胞免疫反应。7 能够增强体液和细胞免疫反应的新策略仍然是治疗性肿瘤疫苗开发的重点。作为 FDA 批准的公认安全 (GRAS) 颗粒系统,酵母壳壁(β-葡聚糖颗粒)是
进行了一系列实验室实验,以确定常用湿式添加剂是否会对Ucarcide®50抗菌剂的性能产生不利影响。表1显示了明矾,碳酸钙,高岭土,松香,淀粉,亚硫酸盐和二氧化钛对杀菌疗效25分(PPM)活性Slimicide的杀菌效率。所有添加剂均以0.5%的浓度测试,碳酸钙(0.1%)和亚硫酸盐(0.005%)。使用纯铜绿假单胞菌菌株在pH 7下进行实验。结果比较了在添加剂存在下与单独含有纤维化剂的样品中活性纤维化的疗效。一小时后,所有样品的微生物水平降低了99%。三个小时后,还原基本上是完整的,这表明在存在这些化学物质的情况下,Ucarcide®50抗菌剂的有效性。
1。在晶体,原子或分子中的引入以三维的重复模式排列,并且晶体的特性取决于成分原子或分子的化学组成。晶体的典型图像是盐或明矾等单晶的颗粒,但是许多熟悉的材料,例如金属,陶瓷和晶体聚合物,是由微晶组成的固体。这些称为多晶,与单晶相反。在某些情况下,构成材料较大材料的晶体的质地和结晶度与诸如由多晶体组成的晶体材料的强度和硬度有关。对粉末X射线衍射中晶体聚合物材料的评估大致分为小角度X射线散射(SAXS)区域的分析,对应于约1-100 nm的长周期结构,分析广角X射线散射(WAX)区域,对应于Atom-到ATOM-到ATOM-到-ATOM INTERAM INTERAM INTERAM INTERAM INTERAM INTERAM INTERAM INTERAM INTERAM INTERAM(1)(1 NM(1)(1)(1)(1)(1倍)(1倍)(1)(1倍)(1)(1倍)(1)(1)(1倍)(1)。在考虑
3M FC -75 4 4 4 4 1 1 2 1 乙酰胺 4 4 1 2 1 1 3 1 乙酸 (5%) 3 3 1 1 2 1 1 1 丙酮 1 2 1 1 3 1 3 3 苯乙酮 2 2 2 1 3 1 3 3 乙酰丙酮 2 2 2 1 3 1 3 3 乙酰氯 4 2 2 2 3 3 1 3 乙炔 3 2 1 1 1 1 1 2 空气 (100 °C) 1 2 1 1 1 1 1 空气 (150 °C) 1 2 1 1 3 3 1 3 空气 (200 °C) 1 2 1 1 3 3 1 3 乙酸铝4 4 4 4 2 1 3 2 溴化铝 4 4 4 4 1 1 1 1 氯化铝(10%) 3 3 3 3 1 1 1 1 氯化铝(100%) 3 2 2 2 1 1 1 1 氟化铝 3 3 3 3 1 1 1 1 硝酸铝 3 3 2 2 1 1 1 1 铝盐 4 4 4 4 1 1 1 1 硫酸铝 2 3 2 3 1 1 1 1 明矾(NH3-Cr-K) 4 4 4 4 1 1 3 1 氨(无水) 3 2 1 1 2 1 3 1 氨(冷,气体) 3 2 4 1 1 1 3 1 氨水(热、气态) 3 2 4 1 3 2 3 2 碳酸铵 3 2 3 3 3 1 1 1 氯化铵 2 3 2 3 1 1 1 1 氢氧化铵 3 3 1 2 3 1 3 1 硝酸铵 3 3 1 1 1 1 4 1 过硫酸铵溶液 3 3 1 2 3 1 4 4 磷酸铵(一元、二元、三元) 3 3 3 2 1 1 4 1 铵盐 4 4 4 4 1 1 3 1 硫酸铵 3 3 2 3 1 1 3 1 硼酸戊酯 4 4 4 4 1 3 1 1 戊基氯 4 2 1 1 4 3 1 2 戊基氯萘 4 4 4 4 3 3 1 3 戊基萘 4 4 4 4 3 3 1 3 动物油(猪油) 2 2 2 2 1 2 1 2 Aroclor 1248 2 3 3 3 3 2 1 3 Aroclor 1254 2 3 3 3 3 2 1 3 Aroclor 1260 2 3 3 3 1 4 1 1 芳族燃料 -50% 4 4 4 4 2 1 1 3 砷酸 3 3 1 1 1 2 1 1 沥青 3 3 1 1 2 3 1 2 ASTM 油,n° 1 1 1 1 1 1 3 1 1 ASTM 油,n° 2 1 1 1 1 1 3 1 2 ASTM 油,编号 3 1 1 1 1 1 3 1 3 ASTM 油,编号 4 1
去年,我们部门的众多奖项和其他荣誉仍然令人印象深刻。在许多其他令人难以置信的荣誉中,大学杰出教授Sonia Kreidenweis被任命为美国国家工程学院(PG 3),Jeffrey Collett教授荣幸地获得了大学杰出教授的头衔(PG 4)。我们还有很多其他要庆祝的东西。Cal Tech的Dien Wu博士将于2025年1月作为助理教授(第6页)加入我们,最终以非常成功的表面 - 大气相互作用的搜索。我们目前正在寻找新的教职员工,以将人工智能应用于大气科学。也要恭喜约翰尼·陈教授(Johnny Chan)教授,后者被任命为2024 ATS杰出明矾,并将在2025年1月23日在该部门的虚拟仪式上获得奖项(第13页)。今年还有一些苦乐参半的时刻,A.R. Scott Denning教授Ravishankara和Steve Rutledge过渡到名誉身份。我们感到满意的是,这三者都打算保持与我们部门和CSU的密切联系!
图 1 – DCFHP 设计和验证。(A) DCFHP 示意图以红色显示了将 S∆C-Fer 转化为 DCFHP 所做的修改。受体结合域 (RBD)、N 端域 (NTD)、S1/S2 切割位点、S2' 切割位点、融合肽 (FP)、七肽重复 1 (HR1),如注释所示。(B) SDS-PAGE 凝胶显示纯化的 DCFHP 以单体形式运行,分子量达到预期的 kDa(梯形图,左侧显示)。(C) 从 SEC-MALS 确定的 UV(黄色)和光散射(灰色)轨迹显示了均匀的纳米颗粒峰,其近似分子量(虚线)为 3.4MDa。(D) DCFHP 的 3D 重建低温电子显微镜密度图,采用八面体对称性细化。 (E) 用 S∆C-Fer 或 DCHFP(由 500 µg 明矾和 20 µg CpG 1826 配制)免疫小鼠后,第 21 天血清对武汉-1 SARS-CoV-2 假病毒具有类似的强效中和作用,单次免疫后即可达到。在表达 ACE2 和 TMPRSS2 的 HeLa 细胞系中评估中和滴度。10 只小鼠的数据以几何平均滴度和标准差表示。测定定量限 (LOQ) 显示为虚线水平线。
亲爱的学生:您带来了艺术才能,热情和对学习和创造的承诺。中央情报局提供有才华的教师,出色的设施,精心策划的课程,全部支持服务菜单和精心设计的政策,以确保您获得最佳的教育。在此目录中,您将了解中央情报局的全面课程以及为您提供支持的资源。请立即阅读并保留作为参考。这是许多专门的教职员工和工作人员的无数劳动力的产物,他们的重点是您的成功。还要花一些时间在CIA.EDU上浏览我们的网站,并更多地了解我们的员工和计划。我特别鼓励您在专业之外探索许多课程和课程,因为您可能会发现一种新的创意途径或过程,以补充您的艺术实践并帮助您实现职业目标。作为我们使命的挑剔管理者,我们努力通过创新的艺术和设计教育来培养激发人们,增强社区并为蓬勃发展和可持续的经济做出贡献的创意领袖。当您以学生和未来的明矾的身份进入中央情报局家族时,我期待体验您和将继续成为您的创造性,创新,勇敢和雄心勃勃的艺术家和设计师。最佳,凯瑟琳·海德曼(Kathryn Heidemann)总裁 +首席执行官,克利夫兰艺术学院
迫切需要为亚洲、非洲和拉丁美洲的中低收入国家研发安全且负担得起的 COVID-19 疫苗。此类疫苗依赖于重组蛋白疫苗等成熟技术,以促进其向新兴市场疫苗制造商的转移。我们的团队正在开发一种双管齐下的方法来推进重组蛋白疫苗,以预防由 SARS-CoV-2 和其他冠状病毒感染引起的 COVID-19。一种疫苗基于酵母衍生的(毕赤酵母)重组蛋白,由明矾上配制的 SARS-CoV 的受体结合结构域 (RBD) 组成,称为 CoV RBD219-N1 疫苗。这种疫苗有可能用作针对 COVID-19 的异源疫苗。第二种针对 COVID-19 的疫苗也在使用 SARS-CoV-2 的相应 RBD 进行推进。第一种抗原已经按照现行良好生产规范 (cGMP) 制造,因此在装瓶和进行所需的良好实验室规范 (GLP) 毒理学测试后,“随时可以”进入临床试验。其对 SARS-CoV-2 交叉保护的潜在功效的证据包括使用多克隆和单克隆抗体进行的交叉中和和结合研究。支持其安全性的证据包括我们在小鼠攻毒模型中使用致死性小鼠适应性 SARS 毒株进行的内部评估,结果表明 SARS-CoV RBD219-N1(吸附到氢氧化铝上时)不会引起嗜酸性肺病理。总之,这些发现表明,基于 RBD 的重组蛋白疫苗值得进一步开发,以预防 SARS、COVID-19 或其他可能引起大流行的冠状病毒。
激活体液免疫并产生中和抗体的新疫苗平台需要对抗新兴的病原体,包括流体病毒。通过填充免疫细胞的抗原sca剂量将浆液泥浆浆中的高表面积造成抗原摄取,作为生物材料降解,以增强体液免疫力。抗原负载的 - 微凝胶引起了稳健的细胞体液免疫反应,CD4 + T卵泡辅助器(TFH)细胞增加,并长时间生发中心(GC)B细胞与常用的辅助辅助辅助,铝氢氧化铝(ALUM)相当。增加聚合物材料的重量分数会导致材料的增加和抗原特异性抗体滴度优于明矾。用被灭活的流体病毒疫苗接种的小鼠,加入了这种更高度交联的配方中,引起了强烈的抗体反应,并提供了防止高剂量病毒攻击的保护。通过调整物理和化学特性,可以增强辅助性,从而导致体液免疫和防止病原体,利用两种不同类型的抗原材料:个体蛋白质抗原和灭活病毒。平台的灵活性可以使新疫苗的设计能够增强先天和适应性的免疫细胞编程,从而产生和调整高能力抗体,这是一种产生长期免疫力的有前途的方法。