离线增强学习(RL)旨在根据历史数据改善目标政策而不是行为政策。离线RL的一个主要问题是分配转移导致Q值估计的分布转移。大多数现有的作品都集中在行为克隆(BC)或最大化Q学习方法以抑制分布转移。BC方法试图通过将目标策略限制为离线数据来减轻转移,但它使学习的策略高度保守。另一方面,最大化Q学习方法采用悲观的机制来通过根据动作的不确定性来最大化Q值和惩罚Q值来产生动作。但是,生成的措施可能是算法的,从而导致预测的Q值高度不确定,这反过来又将误导该策略以生成下一个动作。为了减轻分配转移的不利影响,我们建议通过统一Q学习和行为克隆以应对探索和剥削难题来隐含和明确地限制政策。对于隐式约束方法,我们建议通过致力于使目标策略和行为策略的行动无法区分的生成对抗网络统一行动空间。对于显式约束方法,我们会提出多重重要性采样(MIS),以了解每个状态行动对的优势权重,然后将其用于抑制或充分使用每个状态行动对。D4RL数据集上的广泛实验表明,我们的方法可以实现出色的性能。MAZE2D数据上的结果表明,MIS与单个重要性采样更好地解决了异质数据。我们还发现MIS可以有效地稳定奖励曲线。关键字:Q学习,行为克隆,悲观机制,多重重要性采样。
House File 1738主席Swedzinski和House Energy Finance&Policy委员会成员的证词,清晰的能源联盟倡导者,要求所有明尼苏达州(包括当地屋顶太阳能)清洁,负担得起和可靠的能源。感谢您有机会在House File 1738上发表评论,该文件将废除可再生开发帐户,并更改由Xcel Energy(Solar*Rewards)运营的太阳能生产激励计划。明确的能源联盟敦促委员会反对HF1738。明尼苏达州立法机关在1994年建立了可再生开发帐户,并通过Xcel Energy的付款,以换取该公用事业公司在其草原岛核电站上及其Monticello工厂中储存放射性核废料(有效地无限期)。账户中存入的资金支持了该州各地的可再生能源项目,并导致了明尼苏达州社区的清洁能源和经济发展。同样,太阳能奖励计划也使许多明尼苏达州人在财务上有可能去太阳能并为我们州的能源独立性做出贡献。此程序对于想要安装屋顶太阳能的低收入和中等收入家庭特别重要。明确的能源联盟不是HF 1738所提供的更改,而是鼓励委员会探索其他方法,以帮助更多的明尼苏达州家庭从当地的清洁能源中受益。这可能包括针对其他公用事业服务的家庭的可退还的州太阳能税收抵免,目前不符合参议院文件441中提议的Xcel Solar*奖励计划的资格。感谢您的考虑,明确的能源联盟黑人视觉社区权力合作能源期货学院地方自力更生的明尼苏达州环境正义桌明尼苏达州互联网国际信仰和轻型塞拉利昂俱乐部
最近结束的联合国气候变化框架公约(UNFCCC)的第29届政党会议(COP-29)面临着各个方面的批评,包括未能解决气候缓解和适应的融资。然而,有一些银衬里,包括对绿色氢的承诺。承诺强调了绿色氢作为解决能量过渡的解决方案的作用。零发射和低碳氢的产生在加速未减弱化石燃料的现有氢产生的脱碳中具有重要作用。承诺提出了双重挑战,即每年有100万吨显着增加绿色氢的产量,并减少目前由未减弱的化石燃料全球生产的96吨氢。
秋季学期:HRS春季学期:HRS批准的高级经验2 ESC 4100:环境法和机构3批准的Biol调查选举(4000级)4 ESC 4840:值和环境3批准的ADV。主题选修(3000-4000级)3-4人文和美术3-4人文和美术3-4行为和社会科学3人文科学与美术3-4选修0-4 15-18 12-17
在2024年5月,国家基础设施委员会确定了曼彻斯特,伯明翰,利兹和布里斯托尔等主要城市之间的重要铁路容量差距,如果未解决,这可能会阻止其经济增长和生产力。2我们现在需要制定并坚持一项跨越南北和东西方连接的英国铁路的全面长期战略。这种策略将为市长和其他次国运输机构制定的计划提供基本背景。
侧门镜是车辆外部的少数部分之一,因此需要高耐热性,以抵御高温和水的耐用性,以承受恶劣的天气,强烈的振动和其他恶劣的驾驶条件。从设计阶段的一开始,我们就会想到可靠的功能和质量,将我们对机械电路设计的知识与光学(镜像)技术相结合。利用我们在后视镜方面的专业知识,我们继续解决市场问题,制造商需要提出尖端功能和设计,包括世界第一,充满经验,知识和我们经过验证的发展设计。
b'abstract:与乙烯基连接的二维聚合物(V-2DPS)及其层堆叠的共价有机框架(V-2D COF)具有高平面内\ XCF \ XCF \ x80-Conjugation和Robobs框架的能量候选候选者。但是,当前的合成方法仅限于产生缺乏加工性的V-2D COF粉末,阻碍了它们进入设备,尤其是在依赖薄膜的膜技术中。在此,我们报告了通过knoevenagel多凝结的乙烯基链接阳离子2DPS膜(V-C2DP-1和V-C2DP-2)的新型水上表面合成,可作为高度可逆且基于耐用锌的Dual-iro-ion patchies(Zdibs)的阴离子选择性电极(作为阴离子)。模型反应和理论建模揭示了水面上knoevenagel反应的反应性和可逆性的增强。在此基础上,我们证明了对V-C2DPS膜的水表面2D多浓度,该膜显示出较大的侧向尺寸,可调厚度和高化学稳定性。代表性地,V-C2DP-1作为完全结晶和面向面的膜,具有A = B 43.3 \ XC3 \ X85的平面晶格参数。从定义明确的阳离子位点,定向的1D通道和稳定的框架中获利,V-C2DP-1膜具有优质的Bis(Trifluoromethanesulfonyl)Imide阴离子(TFSI)inImide(TFSI) - 转移率(T_ = 0.85),用于高空ZDIBS,从而在高空zdibs中进行transpertion andercation transportive and-Interc Zdib and Fratsion trande trander-dranscation-intrance zdib and。促进其特定能力(从〜83到124 mahg 1)和骑自行车寿命(> 1000个循环,能力保留95%)。
视频:离散和定义明确的聚合物的制备是模仿自然界大分子合成所获得的显着精确性的新兴策略。尽管现代受控的聚合物技术已经解锁了横跨各种单体,分子量和体系结构的材料的聚宝盆,但“控制”一词并不与“完美”相混淆。的确,即使是最高的聚合技术,由于链生长的统计学性质,不可避免地会在不可避免地会产生u = 1.05附近产生摩尔质量分散性。这种分散性会影响研究人员寻求控制软材料设计的许多属性。因此,制定最小化或完全消除分散性并获得分子精确聚合物的策略仍然是当代的关键挑战。While significant advances have been made in the realm of iterative synthetic methods that construct oligomers with an exact molecular weight, head-to-tail connectivity, and even stereochemistry via small-molecule organic chemistry, as the word “iterative” suggests, these techniques involve manually propagating monomers one reaction at a time, often with intervening protection and deprotection steps.结果,这些策略是耗时的,难以缩放,并且仍然限于较低的分子量。该帐户的重点是一种替代策略,由于其简单性,多功能性和负担能力:色谱法。■密钥参考不熟悉合成复杂性的研究人员可能会回想起在本科化学实验室中暴露于色谱法。这种操作简单但功能非常强大的技术最常见于小分子通过其选择性(差异)吸附到装有低成本固定相(通常是二氧化硅)的色谱柱上的纯化中。由于必要的设备很容易获得,并且实际分离所需的时间很少(按1小时为单位),因此色谱法在整个行业和学术界都广泛地用于小分子化学。也可能令人惊讶的是,在聚合物科学领域,类似类型的色谱也没有更广泛的利用。在这里,我们讨论了使用色谱法控制聚合物材料的结构和特性的最新进展。重点放在基于吸附的机制的实用性上,该机制基于材料科学的可拖动(克(克)尺度的极性和组成分离聚合物,与尺寸排除相比,这是非常普遍的,但通常分析的样品(〜1 mg),并且限制为摩尔质量的样品(〜1 mg)。突出显示的关键概念包括(1)将低分子量均聚物分离为具有精确链长度的离散低聚物(a = 1.0),以及(2)将块共聚物分成高素质的高素质和广泛多样的图书馆,以进行预告材料发现。总而言之,作者希望传达色谱法提供的聚合物科学中令人兴奋的可能性,作为一种可扩展的,多功能甚至自动化的技术,可以通过不同的培训和专业知识来解锁各种研究人员的新探索途径,以供各种研究人员探索良好的材料。
图2。PSM-CO -OMAM(共co-)聚合物的结构和表征。(a)聚合物结构显示醛平衡及其乙酰形式。(b)1 H NMR(700 MHz,d 2 O)纯化的PSM- CO-OMAM共聚物(S25 – S75)和峰分配的聚(3-磺胺甲基丙烯酸酯)均聚合物(S100)的光谱。请注意,游离醛状态(a,b,c)及其相关的乙酰形式(a*,b*,c*)的存在。在图S14中,将S25频谱作为代表性示例包括在表示a:b:c的积分比为≈1:1:1:a+a*:b+b*:c+c*是≈1:2:2。(c)纯化的S25 – S100的ATR-FTIR光谱。酰胺I和醛羧基拉伸(1637 cm -1),酰胺II带(1537 cm -1),磺酸盐(1041 cm -1)和酯(1714 cm -1)峰用点缀的线表示。S100光谱中带有星号(*)的峰与指定的酰胺I和醛峰(1648 cm -1 vs 1637 cm -1)不一致。完整的ATR-FTIR光谱可以在图S15中找到。