图片列表 v 表格列表 vi 出版物 xii 致谢 xiv 摘要 xv 第 1 章:引言 1 第 2 章:工业厂房风险分析 8 2.1 引言 8 2.2 外部事件的选择 9 2.3 风险评估:方法 14 2.4 地震危险性分析 15 2.4.1 确定性地震危险性分析 (DSHA) 16 2.4.2 概率地震危险性分析 (PSHA) 17 2.4.3 震源识别 19 2.4.4 地震复发关系 20 2.4.5 地面运动衰减关系 21 2.5 构件的结构分析和易碎性 23 2.5.1 厂房设施分析 27 2.5.2结构系统 28 2.5.3 故障模式特性 31 2.5.4 部件的易碎性 36 2.6 工厂系统和事故序列分析 41 2.6.1 归纳法 41 2.6.2 演绎法 43 2.6.3 故障树 44 2.7 后果分析 45 2.7.1 源模型 46 2.7.2 扩散模型 51 2.7.3 爆炸和火灾 53 第 3 章:工业设施特性 60 3.1 简介 60
阿托伐他汀是一种用于治疗高脂血症的一线药物,该专利于2011年用完。目前,在印尼流通的阿托伐他汀片剂有原创药、多个品牌药和仿制药。本研究通过性能测试、重量均匀度、硬度、易碎性、崩解时间、使用紫外可见分光光度计测定含量和溶出度试验等物理质量测试来确定印尼流通的阿托伐他汀制剂的质量。溶出度试验使用 pH 值为 1.2、4.5 和 6.8 的 aquades 介质和缓冲溶液,体积为 900 ml,搅拌速度为 100 rpm,温度为 37°C ± 0.5,测试时间为 45 分钟。对三个样品进行了测试,即原创药、品牌药和仿制药阿托伐他汀片剂样品。三个药片样品均符合所有物理标准,包括重量均匀性、硬度、易碎性和崩解时间。原研药、品牌药和仿制药的阿托伐他汀含量测定结果均符合含量要求,即不低于标签标示量的 90.0%,不超过标签标示量的 110.0%。品牌药阿托伐他汀片的溶出曲线与原研药相似,而仿制药阿托伐他汀片的溶出曲线与原研药不同。关键词:阿托伐他汀,物理质量测试,溶出曲线
背景:胃溃疡是一种普遍的疾病,具有各种病因,包括非固醇抗炎药和饮酒。这项研究旨在探索他达拉非和柠檬烯作为一种自含量乳化系统(SNES)基于口量分散的片剂的双重胃保护作用。方法:制备了达拉非负载的基于柠檬烯的SNE,并根据粒径(PS),多分散指数(PDI)和ZETA电位(ZP)(ZP)表征最佳公式,然后在各种多孔载体上加载以形成Lyophilized lileophilized lilepherized odsperspaspersible diquspersible片剂(ODTS)。通过确定硬度,易碎性,内容均匀性,润湿和分解时间来评估ODT。在大鼠模型中,检查了所选的ODT对酒精诱导的溃疡的胃溃疡保护作用。溃疡评分和溃疡指数。结果:制备的SNES的液滴尺寸为104 nm,多分散性指数为0.2,ZETA电位为-15.4 mV。从配方的不同ODT中,具有优质润湿时间的公式:23.67 s,未偿分的分解时间:28 s,接受的硬度值:3.11 kg/cm 2和易碎性:指定0.6%。与奥美拉唑预先治疗的组相比,卸载和tadalafil负载的ODT的显着胃保护作用被确认。此外,组织病理学分析在基于柠檬烯的ODT组中表现出非常轻度的炎症,并且在达达非al负载的预处理动物中显示了完整的结构。结论:与他达拉非共同的ODT形式一起起作用的柠檬烯胃保护作用,可以作为在胃溃疡预防方面提高功效的有希望的收入。关键字:胃溃疡,胃保护,柠檬烯,牙本质片,自纳米乳化系统,tadalafil
摘要:通用药物或品牌药物的使用在全球范围内引起关注,政府促进了仿制药而不是品牌的使用。盐酸二甲双胍是一种一线抗糖尿病药物,用于治疗II型糖尿病,尤其是在肥胖患者中。可以使用各种品牌的二甲双胍品牌,因此选择有效且经济的选择使其具有挑战性。这项研究旨在比较和评估不同销售品牌的通用和品牌二甲双胍片的性能。选择了两个500 mg片剂并评估其物理和化学参数。使用官方标准确定所有品牌的理化等效性,包括厚度,硬度,重量变化,易碎性,崩解时间,标准校准曲线,溶出研究和药物含量。结果表明,按照IP规格,所有品牌都在可接受的范围内。建议以不同的配方进行进一步的研究以确保产品质量。
一个很好的例子是用于汽车的聚碳酸酯大灯,这些大灯从市场上挤出了玻璃头灯。为了确保驾驶员和行人的安全,车辆前照灯在发生事故时不应破裂或粉碎。此外,为了确保交通安全,他们不应眩光即将到来的交通,因此即使在沿着道路的小石头芯片产生不可避免的影响后,也必须确保一致的光线分布。作为高性能工程塑料,聚碳酸酯确保明亮的光线并同时满足耐用性,透明度和重量以及撞击和耐热性的所有要求。因此,任何试图限制聚碳酸酯的生产或消耗的尝试,包括通过对化学物质的“水平”限制,而无需适当考虑这种塑料在大灯中的主要应用之一 - 耐用的产品 - 最少暴露于人类的耐用产品 - 会导致与玻璃的“遗憾替代”与玻璃的“遗憾替代”。最终,在汽车行业中,由于易碎性和其他缺点,这将损害行人和交通的安全性,作为车前照灯的替代材料。
微电极阵列提供了记录对大脑研究至关重要的电生理活动的方法。尽管它起着根本性的作用,但没有办法定制电极布局以满足特定的实验或临床需求。此外,目前的电极在覆盖范围、易碎性和成本方面存在很大局限性。使用克服这些局限性的 3D 纳米粒子打印方法,我们展示了利用 3D 打印过程灵活性的电极的首次体内记录。可定制且物理上坚固的 3D 多电极设备具有高电极密度(2600 个通道/cm 2 面积),组织损伤最小,信噪比极佳。这种制造方法还允许灵活的重新配置,包括不同的单个柄长度和布局,具有较低的总通道阻抗。这在一定程度上是通过定制的 3D 打印多层电路板实现的,这本身就是一项制造进步,可以支持多种生物医学设备的可能性。这种有效的设备设计可以实现整个大脑的有针对性和大规模电信号的记录。
摘要:近年来,牙科材料取得了显著进展,尤其强调了生物活性玻璃和陶瓷复合材料的开发进展。生物活性玻璃促进骨再生和修复的独特能力引起了广泛关注。这导致其在该领域的广泛应用。陶瓷复合材料由于其优异的强度、生物相容性和美观性,作为牙科材料的应用已显示出良好的效果。本综述文章概述了生物活性玻璃和陶瓷复合材料的最新发展,包括它们的特性、制造技术和在牙科领域的应用。本研究将集中于生物活性玻璃在修复牙科、骨增强干预和牙髓治疗领域的应用。将研究陶瓷复合材料在种植牙中的应用,以及它们在其他牙科环境中的预期应用。本综述旨在阐明与使用上述材料相关的困难,包括其易碎性和对精细处理的要求,以及缓解这些困难的合理补救措施。本综述文章说明了生物活性玻璃和陶瓷复合材料的进步能够大大提高各种牙科手术的效果,从而为患者提供更持久、外观更美观、生物相容性的修复体。
先有常识,后有语言 赋予计算机常识的挑战自人工智能 (AI) 诞生之初就被视为实现其宏伟目标的主要障碍 [1],至今仍是一个重大问题 [2 – 6]。常识没有一个普遍接受的定义。然而,大多数作者都使用语言作为试金石,他们遵循 [1] 的例子,他说“如果一个程序能够自动推断出足够广泛的直接后果,这些后果来自它被告知的任何事情和它已经知道的事情”,那么它就拥有常识。因此,常识测试通常基于语言。例如,一个这样的测试使用所谓的“Winograd 模式”[7 – 9]。这些句子之间只有一个单词不同,并且包含一个模棱两可的代词,其解析取决于对某些常识方面的理解。考虑句子“落石砸碎了瓶子,因为它很重”和“落石砸碎了瓶子,因为它很易碎”。代词“它”在第一个句子中指的是石头,但在第二个句子中指的是瓶子。由于我们对坠落和易碎性的常识理解,我们能够在每种情况下正确解析代词。相比之下,在本文中,我们将暂时将语言放在一边,重点关注非人类动物中也存在的常识能力。我们的理由是,这些能力也是人类常识的基础。可以说,它们在概念上先于语言,而人类语言建立在它们提供的基础之上 [10] 。
摘要 - 现在,混凝土用于最大的建筑项目,并且在不久的将来,没有其他选择。有必要开发更好的质量混凝土,以延长生存更长的生存并具有提高机械品质,以延长任何结构的使用寿命,因为大量混凝土被用于新建筑工作。不可能改变其天生的易碎性或对任何混凝土结构的拉伸强度的要求。纤维增强混凝土(FRC)似乎是可行的替代品。聚酯和聚丙烯纤维(PP)作为混凝土中的二级加固以改变其脆性特性的实际应用是本研究论文的主要主题。在这项调查中采用了M40级混凝土等级。结果,将不同比例的聚酯和聚丙烯纤维添加到混凝土中。按该顺序按混凝土的重量进行0.32、0.37、0.42和0.47。为了研究聚酯和聚丙烯在混凝土中的使用,进行了一系列受控的实验室测试。对于压缩和弯曲强度,仅在第一个样品中评估了基本混凝土混合物。在0.32、0.37、0.42和0.47%的聚丙烯纤维中分别评估第二个样品的抗压强度和弯曲强度,将其添加到混凝土混合物中。在第三个混凝土样品中测试了聚酯和聚丙烯纤维。演示了如何在混凝土中添加纤维可以提高其质量。
抽象的尝试是通过使用羟基丙基甲基甲基纤维素的不同粘度级别的不同粘度级(HPMC K4M,HPMC K4M,HPMC K15M,HPMC K15M,and HPMC K100M,and HPMC K100M)和nucutcriant和nucation and and and sande释放30分钟的葡萄象和控制释放超过12小时的盐酸盐酸盐释放。片剂是通过湿砂技术制备的。评估了颗粒的休息角,松散的大体密度,挖掘和散装密度。它显示令人满意的结果。片剂经过厚度,体重变化,药物含量,硬度,易碎性和体外释放研究。使用USP溶解设备II(PADDLE)在900ml pH 6.8磷酸盐缓冲液中作为二甲双胍HCl的溶解培养基和0.1N HCl缓冲液作为Glimepiride的溶解培养基[30mmin]进行了12小时。用零阶,第一阶,Higuchi,Korsmeyer Peppas方程探索并解释了释放机制。基于药物动力学的释放,通过与市场产品进行比较选择了优化的配方。可以清楚地看出,由HPMC K100M制备的夹层渗透泵片中释放药物,为准备二甲双胍盐酸盐的控制释放配方提供了更好的结果。关键字:糖尿病,控制释放,二甲双胍HCl,Glimepride,HPMC K100M。