莲花种子敏感易腐和褐变。但是,很少有出版物强调UV-C治疗的应用。这项工作的目的是评估UV-C辐射对储存期间4℃储存过程中莲花种子的物理化学和微生物质量的潜在影响,持续8天。评估了5分钟和10分钟的UV-C暴露时间。结果表明,10分钟-UV-C处理的莲花种子的总可行数量达到了泰国工业标准研究所(TISI)脆皮莲花种子(TCPS 490-2547)(≤3log cfu/g)的标准质量,尽管所有处理的酵母和模具均未受UV-C辐射的影响。此外,与对照处理相比,在UV -C处理的样品中发现了10分钟,酚含量的降低水平不受UV -C的影响,而酚含量的积累和产物软化的延迟。因此,处理10分钟的UV-C可以用作控制储存期间莲花种子产品总细菌数量生长的一种有希望的方法。
多阶段SC的MPC技术通常会根据三种不同的对照档案(集中式,分散和分布式)进行。前两个在(Alessandri等,2011),(Fu等,2014)中进行了讨论,(Fu等,2016),(Mestan等,2016),(Perea-Lopez等,2003)。集中式方法的主要限制是:数值综合性,计算成本,不愿共享信息。分散的方法没有这些弊端,但会导致性能丧失,因为控制剂彼此独立地决定控制措施。因此,兴趣最近集中在分布式MPC(DMPC)(Fu等,2019),(Fu等,2020)(Kohler等,2021)。上述论文并未考虑到库存系统中的不在项目的存在。另一方面,如果未考虑易腐商品的影响,则会观察到供应链系统的严重退化。易腐烂商品库存水平的集中式MPC已在(Hipolito等,2022; Lejarza and Baldea,2020)中进行了研究。这些后一篇论文假定了一个完全已知的恶化因素。然而,在实际情况的压倒性部分中,这种简化的信息无法满足(Chaudary等,2018)。
结果:总的来说,大多数参与者对食物卫生和保存的了解不足,但对个人卫生的了解很好。知识差距是关于清洁和使用炊具的健康方法(35.38%),冰箱中食物的储存(33.85%)的差距(33.85%)的,当餐具煮熟到烹饪蔬菜和肉(12.31%)时,可能会暴露于食源性病原体(12.31%)。这项研究的几乎所有参与者对食品安全都有积极的态度。大多数参与者(n = 100,76.7%)都同意,分离原生和煮熟的食物是避免细菌传播的最佳方法。此外,有109名受访者(83.85%)同意,在准备食物之前洗手可以有效地减少FBD的传播。此外,有117名参与者(90%)不同意,需要处置过期的易腐食品,而91.54%的参与者不同意监测清洁度和健康的餐食很重要。我们的发现表明,有57.15%的参与者在食品安全程序中具有低到中间的能力,例如避免交叉污染,检查食物温度和处理食物前和之后彻底洗手。
摘要。本条例确立了食品服务管理的政策和程序,并指定现役陆军、陆军国民警卫队和美国陆军预备役部队在和平时期或动员期间的职责。本条例的提议机构是陆军野战供料系统办公室。它为审查提供指导方针,但须遵守主管后勤的副参谋长 AR 的要求。11-2。它包含内部控制规定、单位化作业口粮和易腐口粮的使用以及政府膳食报销的建议改进清单。它还提供关于后勤、接收、核算和报告野战厨房、补给点和部队补充行动数据的指导。WASH DC 20310-0564. 问题补充。本条例还规定了生存作业计划中需要包含的数据元素,禁止在事先获得总部批准的情况下分发本出版物。 生存作业计划必须由规划小组填写 DA 表格 12-09-E,块号为 3926。 临时变更 本条例旨在针对指挥级别人员,提供给参与野外训练的人员,在进行任何野外训练之前或由行政助理通知后,才可分发本出版物。
由于其线性和动态特性,公路建设项目对于国家的发展至关重要,需要仔细规划、调度和资源管理。由于对材料和设备的需求会随着项目的进展而变化,因此必须有效地分析这些资源以减少延误。工厂的易腐混合物必须按时交付,以避免浪费现场资源。项目的成功取决于及时和适当的物资和机械分配。在国际建筑行业,延误管理仍然是一个重大问题。根据公路运输和公路部 (2020-2021) 的数据,印度正在对道路基础设施进行大量投资,拥有世界第二大公路网。道路建设速度从 2014-15 年的每天 12 公里增加到 2018-19 年的每天 30 公里,2016 年至 2021 年期间,基础设施行业占印度 GDP 的近 4%。到 2022 年底,目标是每天 40 公里,这些进步凸显了资源管理和规划的重要性。在高速公路建设项目中,使用来自施工现场的实时数据可以大大改善调度和规划程序,帮助解决问题并提高生产力。
由于食品行业的全球化,参与者的数量随着易腐商品的扩展而增加,并且在食品供应链中的信息方面增加了可变性。这导致了一个更复杂的食品系统,因此很难解决粮食供应链中的问题。食物供应连锁店的复杂性会带来挑战,包括食品安全问题,食物浪费,食物损失和成本问题。最近,联合国环境计划(2024)报告说,在到达征服之前,约有13%的食物在生产和运输过程中丢失,而制造业和零售水平的效率低下会导致杂货店中约30%的食品被丢弃。由于此事,不道德的做法和透明度问题造成了严重的问题,例如食物召回和食品欺诈。此外,食物召回已导致供应链中的巨大成本,并损害了对消费者的信任。因此,缺乏透明度,即跟踪食品以及了解食品供应链中的环境影响,可能会使人们的信任问题变得更加恶化,从而表现出对创新解决方案的重要需求(Duan等,2020)。
由于全球化、技术的快速进步和竞争的加剧,企业和客户的期望在当前环境中发生了变化。航空货运已成为全球供应链的重要组成部分,因为它使各国能够在生产过程中使用外包,并允许跨国公司和小型企业参与该过程,产品寿命更短,能够可靠快速地交付,并拥有最先进的技术基础设施。这使得这些要求能够得到满足。虽然航空物流在物流领域发挥的作用相对有限,但由于其在国际贸易和现代物流运营中的效率,以及在可靠地转移大多数高价值或易腐货物方面的作用,它对企业至关重要。制造商更喜欢快速、安全和可靠的运输服务,以满足消费者对快速可靠交付的需求。目前,航空货运在全球和本地市场上都具有显著的竞争优势。出于这些原因,尽管它是最昂贵的运输方式,但它是最受欢迎的旅行方式。航空业的这些变化也使市场竞争达到了一个关键水平。在这种情况下,航空公司只有建立并维持能够留住人才的人力资源战略,才能生存并保持竞争优势。
摘要生物时温度集成剂(TTI)为改善食品安全和防止变质提供了一种新颖的方法。这些智能工具继电器通过不可逆的色彩转移,时间和温度对它们所附加的食物的微生物质量的累积影响。在迄今为止开发的各种TTI中,生物TTI具有再现食物中发生的微生物腐败反应的优势。它们是基于乳酸细菌(LAB)生长和酸化引起的标签中包含的培养基的pH下降。在开发基于实验室的TTI时,仔细的实验室菌株选择,对TTI生产的研究和开发工作是必要的,以与在储存易腐食品的储存过程中生长的变质和致病微生物的行为相匹配。涵盖广泛的时间温度曲线是一个具有挑战性的目标,涉及不同领域(微生物学,食品科学,建模等)的研究。本章介绍了基于实验室的TTI的设计和工作原理,如何将它们进行参数化以跟踪宽范围的架子传动以及如何评估其性能。还讨论了这种使用乳酸细菌的创新方式的当前应用和未来前景。
太阳能疫苗储存器是一种利用太阳能发电的冰箱。在炎热地区,太阳能冰箱可以保持肉类和奶制品等易腐商品的低温,还可用于将疫苗保持在适当的温度,以尽量减少变质。太阳能冰箱更有可能在欠发达国家使用,以帮助减轻贫困和气候变化。发达国家的插入式冷却器配有备用发电机,可以可靠地储存疫苗,但发展中国家需要其他制冷技术,因为这些国家的电源可能无法预测。在这种情况下,太阳能疫苗储存系统可以帮助克服电力中断和移动性等问题。本概述描述了在寒冷环境中安全储存疫苗和其他医疗和家庭用品而不损害其质量。该系统将由太阳能电池板供电,电池用于存储,以及 AT MEGA 328 处理器和其他组件供电。拟议的系统将帮助用户或所有者保持凉爽的温度以保存产品。太阳能被捕获并储存在系统中以备将来使用。该系统是便携式的,用户可以随身携带。该系统还设计为在单相 230 伏电源下运行。
新鲜产品的特点是保质期较短,因为它们是许多微生物的极佳生长培养基。因此,微生物腐败导致大量食品供应损失已成为全球巨大的经济和道德问题。抗菌包装通过延长保质期和提高新鲜产品的质量和安全性,为解决这一经济和安全问题提供了可行的解决方案。本研究的目的是调查用先前表征的抗菌肽线粒体靶向肽 1 (MTP1) 功能化的聚对苯二甲酸乙二醇酯 (PET) 食品接触表面对减少与腐败相关的微生物种群和提供不同类型的新鲜食品(如意大利乳清干酪和水牛肉)的保质期稳定性的影响。通过水接触角测量和衰减全反射模式 (ATR-FTIR) 的傅里叶变换红外光谱测量,对改性聚合物的等离子体活化过程进行了表征。结果表明,MTP1-PET 对腐败微生物具有强效抗菌作用,且对人类结肠癌细胞系无细胞毒性。最后,活化聚合物表现出高储存稳定性和良好的可重复使用性。这项研究为开发替代抗菌包装提供了宝贵的信息,以提高和延长易腐食品在储存期间的微生物质量和安全性。