Anderson,J。C.(2017)。 对乙酰氨基酚,P-氨基苯酚和P-氨基苯甲酸的生物合成产生。 Behle,A.,Saake,P.,Germann,A。T.,Dienst,D。,&Axmann,I.M。(2020)。 比较剂量 - cy-细菌中诱导启动子的反应分析。 ACS合成生物学,9,843 - 855。 Berliner,A.J.,Hilzinger,J.M.,Abel,A.J.,McNulty,M.,Makrygiorgos,G.,Averesch,N.J.H.,Gupta,S.S.,S.S.,Benvenuti,A.,Caddell,D. Lipsky,I.,Mirkovic,M.,Meraz,J。,…A.P。(2020)。 朝着火星上的生物制造业。 天文学和太空科学的边界,8,1 - 20。 Blue,R。S.,Bayuse,T。M.,Daniels,V。R.,Wotring,V。E.,Suresh,R.,Mulcahy,R。A.,&Antonsen,E。L.(2019)。 为NASA勘探太空飞行提供药房:挑战和当前的不足。 NPJ微重力,5,14。Anderson,J。C.(2017)。对乙酰氨基酚,P-氨基苯酚和P-氨基苯甲酸的生物合成产生。Behle,A.,Saake,P.,Germann,A。T.,Dienst,D。,&Axmann,I.M。(2020)。比较剂量 - cy-细菌中诱导启动子的反应分析。ACS合成生物学,9,843 - 855。Berliner,A.J.,Hilzinger,J.M.,Abel,A.J.,McNulty,M.,Makrygiorgos,G.,Averesch,N.J.H.,Gupta,S.S.,S.S.,Benvenuti,A.,Caddell,D. Lipsky,I.,Mirkovic,M.,Meraz,J。,…A.P。(2020)。朝着火星上的生物制造业。天文学和太空科学的边界,8,1 - 20。Blue,R。S.,Bayuse,T。M.,Daniels,V。R.,Wotring,V。E.,Suresh,R.,Mulcahy,R。A.,&Antonsen,E。L.(2019)。为NASA勘探太空飞行提供药房:挑战和当前的不足。NPJ微重力,5,14。
从 17 世纪阿塔纳修斯·基歇尔的著作到 18 世纪早期伊曼纽尔·斯威登堡的著作,学者们都曾以冒险家和探险家的身份考虑过前往火星。1877 年,乔瓦尼·斯基亚帕雷利用望远镜观察到火星表面存在密集的线性结构网络,他在意大利语中称之为“canali”,意为“水道”,但该术语被误译为英文“运河”。然而,斯基亚帕雷利在他的著作《火星上的生命》中写道:“与其说是我们所熟悉的真正水道,不如说是土壤中不太深的凹陷,它们笔直延伸数千英里,宽度为 100、200 公里甚至更多。我已经指出,由于火星没有降雨,这些水道可能是水(以及有机生命)在干燥的火星表面上传播的主要机制。”
数十年来,研究思想工作方式的科学家和哲学家一直在辩论模块化问题。他们的主要分歧涉及大量模块化假设,根据该假设,我们所有(或大多数)认知机制本质上都是模块化的。Pietraszewski和Wertz(2022)最近提出了模块化辩论是基于对可以解释思维的分析水平的混乱。本文认为,他们的立场遇到了三个主要问题:(1)论点是不健全的,没有真实的前提; (2)它掩盖了重要的经验问题; (3)它提供的准则不足以避免未来的困惑。随着这些批评的发展,本文将提供一种理解模块化辩论的方式 - 着眼于在概念和巨星上的真正危险中 - 并通过识别一个错误的假设,通过识别一个虚假的假设,通常由大规模的模范劳动的大规模假设共享,这将勾勒出一些指导方向的指导方针,以勾勒出一些指导方向的前进。
《火星上的人类学家》(1995 年)是神经生理学家奥利弗·萨克斯的一本著名著作。与书名相反,这本书既不是关于人类学的,也不是关于这颗红色星球的。事实上,它是七篇论文的合集,这些论文探讨了受特定神经系统疾病影响的人所处的矛盾境况。尽管如此,“人类学”和“火星”这两个词的并列传达了一种难以接近的感觉,长期以来,民族志学者在研究与太空科学和技术相关的领域时都对此习以为常:就像萨克斯七个故事中的主角一样,社会科学和人文学科(通常是含蓄地)被认为不适合前往这种难以想象的土地,据称那里没有任何社会性或人性。直到 21 世纪初,一些开创性的研究才突破了玻璃天花板。民族志学者将目光投向天空,表明与外太空相关的科学和技术实践不可避免地受到权力和知识创造的地球逻辑的影响。
自 20 世纪 80 年代以来,可调谐半导体激光光谱仪一直是 NASA 地球科学的重要组成部分 1 。早期的高空飞机光谱仪使用低温冷却铅盐激光器来测量万亿分之一级别的化学物质,从而有助于了解关键的地球系统。随着可调谐激光器逐渐成熟并可在室温条件下运行,可调谐激光光谱仪的同步小型化使得它们可以集成到 NASA 行星科学平台中,例如火星好奇号探测器上的可调谐激光光谱仪,以了解火星上的地球化学过程和可能的生命特征 2 。NASA 还投资了可调谐激光光谱仪演示,以监测对国际空间站上载人航天至关重要的气体 3 。LAMS 是第一个用于大气监测和载人航天环境中环境控制与生命支持系统 (ECLSS) 硬件反馈控制的可调谐激光光谱仪系统。有关这一目标的动机和之前 TLAS 的开发将在其他地方描述 4 。
41 幅作品,包括 J Rosseau 和 JP Caron 的《法国汽车一百年》; A Raffaëlli 的《激情档案》;米卢斯国家汽车博物馆的“Schlumpf Collection,绝妙的愚蠢”; JP Thevenet 和 P Vann 的“昨天和今天的敞篷车”; JL Ribemon 的《汽车的记忆 1895 1995》; F Sabates 和 S Schweitzer 的《安德烈·雪铁龙,荣耀的 V 形》; “Dynamik beherrschen Teves”;莫比乌斯的《雪铁龙在星星上的巡航》;汽车制造商联盟商会颁发的“法国汽车100年”; “勒芒 24 小时耐力赛”1978 年、1979 年、1980 年、1982 年、1992 年; G Crombac 的《科林·查普曼 (Colin Chapman) 一级方程式赛车史诗》; R Klein 和 R Boccafogli 的《L'ultima volta deimostri》; “1927-1997 70周年L’argus”; Rde Laborterie 的“1986 年一级方程式金书”。 200 / 300 €
摘要:S-Step(小型合成孔径雷达(SAR)技术实验项目(S-Step))任务的主要目标是开发80公斤级的活动X波段SAR观察小卫星。对于S-Step系统的更轻,更小,更好,更便宜的开发,新的热设计策略至关重要。因此,我们在这项研究中提出了一种新的热设计策略。提议的热设计的主要特征涉及通过优化卫星上的环境热量量,在右和左外观模式下提供长期SAR成像持续时间,以及使用轻巧的石墨板作为某些高电量仪器的热量界面。这些功能通过加热器功率最小化并实现S-Step的轨道系统性能来最大程度地减少卫星的质量预算。通过对S-步骤系统的轨热分析,通过数值验证了所提出的热设计的有效性。此外,通过空间模拟的热真空测试对钥匙有效负载组件和多功能发送/接收模块结构的热设计进行了验证。
空军研究实验室 (AFRL) TechSat 21 飞行试验演示了三颗微卫星编队飞行,作为“虚拟卫星”运行。每颗卫星上的 X 波段发射和接收有效载荷形成一个大型稀疏孔径系统。卫星编队可以配置为优化各种任务,如射频 (RF) 稀疏孔径成像、精确地理定位、地面移动目标指示 (GMTI)、单程数字地形高程数据 (DTED)、电子保护、单程干涉合成孔径雷达 (IF-SAR) 和高数据速率安全通信。与单个大型卫星相比,这种微卫星编队的优势包括无限的孔径大小和几何形状、更大的发射灵活性、更高的系统可靠性、更容易的系统升级以及低成本的大规模生产。关键研究集中在编队飞行和稀疏孔径信号处理领域,并由空军科学研究办公室 (AFOSR) 赞助和指导。TechSat 21 计划初步设计评审 (PDR) 于 2001 年 4 月举行,并结合了大量系统交易的结果,以实现轻量、高性能的卫星设计。概述了实验目标、研究进展和卫星设计。
该项目采用全社会参与的方式,涉及地方政府单位 (LGUs)、国家政府机构 (NGAs)、研发机构 (RDIs) 和公民,以及非政府组织,如民间社会组织 (CSOs) 和私营公司,以提供基于空间的服务。最近的一个例子是全国红树林地图的开发和分发,菲律宾国家科学与技术局与菲律宾环境和自然资源部 (DENR) 合作。利用卫星图像、遥感和人工智能技术,菲律宾国家科学与技术局能够快速生成全国地图并将其分发给公众进行地面验证。值得注意的是,这种敏捷的方法通过积极的社区参与和促进公民科学,为可持续发展做出了贡献。菲律宾国家海洋和大气管理局的另一个相关项目是泛亚地理空间空气污染信息项目和潘多拉亚洲网络 (PAPGAPI-PAN),该项目旨在通过 GEO-KOMPSAT-2B 卫星上的地球静止环境监测光谱仪 (GEMS) 和用于数据验证的地面遥感仪器网络(称为潘多拉)监测空气质量。这是通过我们与韩国的合作实现的,对此,我们表示最崇高的感谢。
精确而稳定的航天器指向是许多天文观测的必要条件。指向对纳米卫星尤其具有挑战性,因为即使是最小的姿态控制系统也需要不利的表面积与质量比和成比例的大体积。这项工作探索了在不受执行器精度或执行器引起的抖动等干扰限制的状态下天体物理姿态知识和控制的局限性。对原型 6U 立方体卫星上的外部干扰进行了建模,并根据可用恒星通量和可用体积内望远镜的抓取来计算极限传感知识。这些输入使用模型预测控制方案进行集成。对于 1 Hz 的简单测试案例,使用 85 毫米望远镜和一颗 11 等星,可实现的天体指向预计为 0.39 角秒。对于更一般的限制,结合可用的星光,可实现的姿态传感约为 1 毫角秒,应用控制模型后,可预测的物体指向精度为 20 毫角秒。这些结果表明,在达到天体物理和环境极限之前,姿态传感和控制系统还有很大的改进空间。