公司:IERUS Technologies, Inc.地点:阿拉巴马州亨茨维尔 主题:N201-079 技术类别:先进电子技术 第二阶段 提案标题:极其精确的星体跟踪器 SYSCOM:SSP FST 事件:WEST 2023 摘要:IERUS Technologies 和阿拉巴马大学亨茨维尔分校联手将 NASA 喷气推进实验室 (JPL) 开发的焦平面计量技术转化为现实。该技术能够以高精度定位焦平面阵列中的像素。事实证明,这种技术与精密望远镜相结合,可以测量焦平面上恒星的位置,精度优于 100 毫角秒。热分析表明,预期的环境不会使精度降低到这个极限之外。光学分析表明,标称设计将提供衍射极限性能。关键词:成像、计量、卫星、空间、可见光传感器、星跟踪器、焦平面阵列、干涉测量法 POC:Stephen Fox,stephen.fox@ierustech.com NAICS:541712
公司:IERUS Technologies, Inc. 地点:阿拉巴马州亨茨维尔 主题:N201-079 技术类别:先进电子技术 第二阶段提案标题:极其精确的星体跟踪器 SYSCOM:SSP FST 事件:WEST 2023 摘要:IERUS Technologies 和阿拉巴马大学亨茨维尔分校联手将 NASA 喷气推进实验室 (JPL) 开发的焦平面计量技术转化为现实。该技术能够以高精度定位焦平面阵列中的像素。该技术与精密望远镜相结合,可以测量焦平面上恒星的位置,精度优于 100 毫角秒。热分析表明,预期的环境不会降低超过此极限的精度。光学分析表明,标称设计将提供衍射极限性能。关键词:成像、计量、卫星、空间、可见传感器、星跟踪器、焦平面阵列、干涉测量法 POC:Stephen Fox,stephen.fox@ierustech.com NAICS:541712
月亮是研究深空血浆和能量颗粒环境的独特位置。在其围绕地球的大部分轨道上,它直接暴露于太阳风中。由于没有全局固有磁场和碰撞气氛,太阳风和太阳能颗粒几乎没有偏离或吸收而到达,并直接影响其表面,与月球雷隆和脆弱的月球外层相互作用。到达月球表面的能量颗粒可以吸收或散射,也可以通过溅射或解吸从月球岩石中去除另一个原子。同样的现象也发生在银河宇宙射线中,它呈现典型的行星际空间的通量和能量光谱。在5 - 6天的每个轨道中,月亮越过陆地磁层的尾部。然后,它提供了在陆地磁尾等离子体环境以及大气从地球电离层中逃脱的可能性,以重离子的形式加速并向下流动。月球环境提供了一个独特的机会,可以研究太阳风,宇宙射线和磁层与表面,直接地下以及未磁性行星体的表面外观的相互作用。
摘要。我们对正常流体组合物的新生中子星体中R -Mode不稳定性的时间持续时间,最终频率和出口温度进行了研究,假设R- mode是主导的旋转机制。发现,当直接URCA起作用时,这些旋转功能会因星质量而变化。直接URCA的出现是从状态基础方程的对称能量的基础上决定的,这仍然是不确定的。通过计算核心直接URCA覆盖范围而导致的块状粘度大小,已经研究了不同质量恒星中旋转特征的变化。以斜率参数L为特征的对称能量的变化范围是根据GW170817事件的潮汐变形性数据和最大质量约束决定的。这项研究是通过应用有限范围的简单相互作用获得的状态的家族来完成的,该状态通过核数据在低和中间密度下限制,以及在重离子碰撞中的流量分析以及因果关系高密度。
需要强大的相对导航系统和传感器来确保成功完成航天器与小天体(小行星、彗星)的自主会合操作、航天器近端/对接机动以及行星体进入、下降和着陆 (EDL) 任务。在过去 5 年内,全局快门闪光激光雷达已成为这些相对导航任务领域的首选传感器。与其他激光雷达模式相比,全局快门闪光激光雷达具有出色的尺寸、重量和功率 (SWaP) 性能,能够生成实时组织的点云并同时跟踪多个物体。首批使用由 Advanced Scientific Concepts LLC (ASC) 设计和制造的全局快门闪光激光雷达相对导航传感器的两个作战太空计划是 NASA/洛克希德马丁 OSRIS-Rex 和 NASA/波音的 CST-100 Starliner(载人航天运输)任务。 OSIRS-REx 任务尤其令人感兴趣,因为这是首次收集闪光激光雷达深空可靠性数据。
• 对于受控物体(例如追踪器/服务器、旨在延长寿命的主动卫星):位置数据的最佳来源经常被认为是卫星/航天器本身的数据,这些数据基于:遥测(姿态轨道控制系统 (AOCS)、数据收集系统 (DCS)、测距信号)、GPS/GNSS(如果配备接收器)、星体跟踪器(最准确,但价格昂贵)和太阳传感器(感知太阳的光强度和位置)。关于近距离操作的定位,机载传感器可以使用以下方法确认识别并提供准确的相对定位:热红外(红外摄像机适用于在寒冷背景下识别热物体)、雷达(无线电波)、激光雷达(光检测和测距)、光学和机器视觉(机载摄像机/望远镜,尽管不能保证照明并且物体移动非常快)。但是,如果无法直接从卫星/航天器获取数据(例如在服务任务之前的客户卫星),SST 也可用于识别、定位和跟踪(例如验证正确的目标)。
2023特刊编辑,MDPI数学,瑞士巴塞尔。《 MDPI数学》杂志特刊的编辑(ISSN 2227-7390):“用于空间动力学和航天器系统的数学方法提前。”2022书籍编辑,荷兰阿姆斯特丹Elsevier。“现代航天器指导,导航和控制:从系统建模到AI和创新应用程序”的编辑(ISBN 9780323909167)。本书中包含的18章的作者兼合着者。2022研究主题编辑,瑞士洛桑边境。《太空技术杂志》杂志研究主题的编辑(ISSN 2673-5075)“在混乱的多体环境中的天体动力学,指导,导航和控制”。编辑文章的作者:“社论:混乱的多体环境中的星体动力学,指导,导航和控制”。2018年 - 文书审稿人。10+ Q1/Q2国际期刊的评论者:{2022年的20多篇文章,{2022 AIAA指导,控制和动力学杂志的出色审稿人。
航天器概述:6U CubeSat 加满燃料后重约 14 千克,包括电源、命令和数据处理、通信、姿态控制、推进和有效载荷子系统。电源子系统包括由 Blue Canyon Technologies (BCT) 和 MMA 开发的四个太阳能电池阵列、一个电力系统 (EPS) 管理板和一个由 Panasonic NCR18650B 电池制成的电池。这些阵列在使用寿命结束时能够提供超过 55W 的功率。命令和数据处理 (C&DH) 由 JPL 开发的 Sphinx 单板计算机提供,其中包括一个 GR712RC 抗辐射微处理器和一个 ProASIC3 FPGA。飞行软件采用 JPL 的 F Prime 框架。航天器使用 Iris Radio,这是 JPL 开发并由犹他州立大学空间动力学实验室建造的小型卫星转发器。一对低增益天线位于航天器 Z 轴的两端,提供与航天器方向无关的发射和接收能力。航天器的姿态确定和控制系统 (ADCS) 由 BCT XACT-50 提供。它利用安装在航天器周围的太阳传感器以及内部星体跟踪器和三个内部反作用轮。
月球是研究深空等离子体和高能粒子环境的独特地点。在绕地球运行的大部分时间里,月球直接暴露在太阳风中。由于缺乏全球固有磁场和碰撞大气,太阳风和太阳高能粒子几乎不会发生任何偏转或吸收,直接撞击月球表面,与月球风化层和稀薄的月球外大气层相互作用。到达月球表面的高能粒子可能会被吸收或散射,或者通过溅射或解吸从月球风化层中移除另一个原子。银河宇宙射线也会出现同样的现象,其通量和能谱是行星际空间的典型特征。然而,在每次轨道运行的 5-6 天内,月球都会穿过地球磁层的尾部。这为现场研究地球磁尾等离子体环境以及大气从地球电离层逃逸提供了可能性,大气以重离子加速并流向尾部的形式存在。因此,月球环境为研究太阳风、宇宙射线和磁层与非磁化行星体的表面、地下和表面边界外层的相互作用提供了独特的机会。
摘要:我们报告了一种新型空间激光雷达的开发,该雷达专为执行小型行星体任务而设计,用于地形测绘和样本采集或着陆支持。该仪器设计为具有宽动态范围,并针对不同任务阶段提供多种操作模式。激光发射器由光纤激光器组成,该激光器通过归零伪噪声 (RZPN) 代码进行强度调制。接收器通过将检测到的信号与 RZPN 内核关联来检测编码脉冲序列。与常规伪噪声 (PN) 激光雷达不同,RZPN 内核在激光发射窗口外设置为零,从而消除了接收器积分时间内的大部分背景噪声。该技术允许使用低峰值功率但高脉冲率的激光器(例如光纤激光器)进行长距离测距而不会产生混叠。激光功率和探测器的内部增益均可调整,以提供宽测量动态范围。激光调制代码模式也可以在轨道上重新配置,以优化针对不同测量环境的测量。接收器采用多像素线性模式光子计数 HgCdTe 雪崩光电二极管 (APD) 阵列,在近红外至中红外波长范围内具有近量子极限灵敏度,许多光纤激光器和二极管激光器都在此波长范围内工作。该仪器采用模块化和多功能设计,主要采用光通信行业开发的组件构建。
