hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
在健康的大脑中,星形胶质细胞在神经元传播和血液 - 脑屏障(BBB)完整性中起着至关重要的作用。星形胶质细胞向反应状态的转化构成了中枢神经系统(CNS)对侮辱和大脑环境变化的生物学反应。众所周知,星形胶质细胞可以独立于神经元复制和积累王子[1-5]。然而,对它们的反应性转移对神经元功能和神经变性的影响知之甚少。在prion疾病中,反应性星形胶质细胞的有益作用似乎与星形胶质细胞生产的牛奶脂肪球表皮生长因子8(MFGE8)有关,这促进了凋亡人体的吞噬和细胞脱布的清除[6]。然而,在评估反应性星形胶质细胞对疾病进展的总体影响时,在保护稳态角色的潜在缺陷和有害功能的出现之外,至关重要的是,至关重要。最近的研究表明,反应性星形胶质细胞可能对神经元和内皮细胞产生净负面影响。从受prion感染的动物中分离出的反应性星形胶质细胞对原发性神经元表现出不利影响,导致树突状脊柱大小和密度降低以及突触完整性的损害[7](图1)。突触毒性作用是通过星形细胞分泌组的变化介导的,突出了信号传导途径在神经元功能障碍中的潜在作用。除了对神经元的影响外,反应性星形胶质细胞破坏了BBB的完整性。共培养实验涉及来自病毒感染的动物的星形胶质细胞或暴露于反应性星形胶质细胞的条件培养基中,诱导了从正常小鼠分离的内皮细胞中与疾病相关的表型[8](图1)(图1)。这种表型通过紧密和粘附连接蛋白的下调和异常定位以及内皮层的渗透性提高来征收这种表型。值得注意的是,星形胶质细胞激活程度和与prion疾病的孵育时间之间观察到非常强的反向相关[9]。具有快速疾病进展的动物群体表现出更严重的天线反应性,这表明星形胶质细胞的表型变化与缓解严重程度之间存在潜在的联系。这种观察结果提出了反应性星形胶质细胞的表型变化有助于更快的疾病进展的可能性。与这一假设一致,通过选择性靶向PERK信号传导的反应性星形胶质细胞中未折叠的蛋白反应的抑制作用,可以将其延长到小鼠中终末疾病的孵育时间[10]。总而言之,与Prion疾病相关的反应性星形胶质细胞对神经元和内皮细胞表现出有害的影响,并且可能是导致疾病进展的因素。阐明驱动星形胶质反应性的基本机制可能具有减轻与Prion疾病相关的神经退行性过程的治疗潜力。
摘要:多种神经和精神疾病,包括多发性硬化症、阿尔茨海默病和精神分裂症,在分子和组织学水平上都表现出明显的髓鞘异常。这些异常与少突胶质细胞功能障碍和髓鞘结构改变密切相关,这可能是导致大脑区域断开以及在这些情况下观察到的典型临床损害的关键因素。星形胶质细胞的数量远远超过中枢神经系统中的神经元,比例为五比一,在神经元和少突胶质细胞的发育、维持和整体健康中起着不可或缺的作用。因此,它们成为无数神经和精神疾病发生和发展的潜在关键因素。此外,针对星形胶质细胞代表了治疗此类疾病的一种有希望的途径。为了更深入地了解星形胶质细胞在髓鞘相关疾病中的功能,必须采用适当的体内模型,以可靠且可重复的方式忠实地重现复杂人类疾病的具体方面。一种这样的模型是铜宗模型,其中少突胶质细胞的代谢功能障碍引发了早期反应,包括小胶质细胞和星形胶质细胞活化,最终导致多灶性脱髓鞘。值得注意的是,在停止铜宗中毒后,会发生自发的内源性髓鞘再生过程。在这篇评论文章中,我们提供了研究铜宗模型中星形胶质细胞的反应和假定功能的研究的历史概述。随后,我们列出了以前发表的著作,这些著作阐明了星形胶质细胞在这种多发性硬化症模型中的生物学和功能的各个方面。一些研究在星形胶质细胞生物学和病理学的背景下进行了更详细的讨论。我们的目标有两个:提供对这一新兴领域的宝贵概述;更重要的是,激励研究人员开展实验研究,阐明这一关键的神经胶质细胞亚群的多方面功能。
要理解这些信号通路,因此必须分开剖析它们。在这篇综述中,我将重点关注独特的调节分子ATP的作用,该分子最初以其在为细胞提供能量方面的作用而闻名,仅几十年后才显示出在大脑中充当发射机[10]。可能是一项具有挑战性的任务,将涉及ATP一般方面的实验数据解释为调节型腔,因为它是由任何细胞类型生成的,因此可以释放出任何细胞类型,并且它靶向许多受体,这些受体在紫purinergic受体家族或其他类型的受体家族或其他类型的受体中触发相反或多余的效果[11,12]。基于最近的文献,研究了从分子到行为水平的天文ATP信号传导,我将尝试简化星形胶质细胞ATP的调节神经元活性及其对脑回路的影响及其对脑循环和行为输出的影响,并侧重于了解星形ATP ATP ATP的兴奋性和抑制性的灰色和灰色的灰色和附近的灰色和灰色的作用。我将通过指定星形细胞ATP信号传导如何在不同大脑状态和能量状态的大脑区域内部和大脑区域之间进行重塑功能电路来结束。
能够远距离分布纠缠的卫星的发射和第一次无漏洞违反贝尔不等式是里程碑,为建立量子网络指明了一条清晰的道路。然而,具有独立纠缠源的网络中的非局域性仅在简单的三部分网络中通过违反双局域性不等式得到实验验证。在这里,通过使用可扩展的光子平台,我们实现了由最多五个远距离节点和四个独立纠缠源组成的星型量子网络。我们利用这个平台来违反链式 n 局域性不等式,从而以与设备无关的方式见证了实施网络节点之间非局域相关性的出现。这些结果为相关领域的量子信息处理应用开辟了新的视角,其中观察到的相关性与标准局部隐变量模型兼容,但如果考虑到源的独立性,则是非经典的。
生长激素(GH)在中枢神经系统(CNS)中的作用涉及神经保护,神经代理,轴突投射的形成,认知控制和代谢的调节。GH诱导许多组织中胰岛素样生长因子-1(IGF-1)的表达,在生物体中区分GH和IGF-1的特定功能是一个重大挑战。与非神经元细胞(例如,小胶质细胞)相比,GH和IGF-1在神经元中的作用更广泛地研究了。神经胶质细胞对CNS功能至关重要。小胶质细胞,星形胶质细胞,少突胶质细胞和tanycytes对于神经元的生存,分化和增殖至关重要。作为GH/IGF-1轴与神经胶质细胞的相互作用值得进一步探索,我们的综述目标是总结并讨论有关GH对GH对神经胶质细胞的真正影响的可用文献,以便尽可能将它们与IGF-1的作用区分开来。
在脑组织中,神经元具有树突,轴突以及星形胶质细胞(如星形胶质细胞)及其过程的神经胶质细胞紧密地交织在一起。这使星形胶质细胞能够通过局部清除神经递质,代谢产物供应以及对离子稳态做出贡献来支持神经元功能。它还允许两种单元格进行双向交流。星形胶质细胞可以通过许多不同的细胞机制感知神经元活动并修改神经元之间的突触信息交换(供回顾[1,2])。因此,他们还可以调节认知过程,例如记忆形成,检索和灭绝。但是,很难将特定的细胞机制与记忆的特定方面相关联(供回顾[3])。这至少部分是因为通常不清楚哪些细胞机制是通过对星形胶质细胞的实验操纵而使哪些细胞机制所涉及的,而星形胶质细胞最终导致记忆功能的变化。星形胶质细胞的光遗传学和化学遗传操作在证明星形胶质细胞对复杂行为和记忆的作用方面非常流行,有效(用于复杂的记忆[3]),并且两者都显示出可增强记忆的作用[4,5]。在一项新研究中,Kim及其同事[6]现在证明,在一段时间的一段时间内,重复并延长了对海马星形胶质细胞的光遗传刺激会损害小鼠在空间记忆,工作记忆和消极恐惧避免的空间记忆测试中的表现。同样,他们发现,反复的星形胶质细胞的化学遗传刺激也降低了被动避免恐惧测试的性能。了解值得注意的是,只有当单个光遗传刺激的持续时间相对较长并且重复至少3天时,才能检测到认知障碍,或者反复反复传递强大的化学遗传刺激。相反,较短和/或较弱的刺激无效。鉴于先前的研究报告了通过化学遗传学和光遗传学的星形胶质细胞刺激在记忆测试中的改善和/或损害[3-5],这强调了需要仔细考虑刺激方案的必要性(还请参见Kim和同事[6]),除了对细胞类型的副作用(E.G. kim),E.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G。和同事。
星形胶质细胞具有复杂的结构、分子和生理特性,并形成支持中枢神经系统电路特定功能的特殊微环境。为了更好地了解星形胶质细胞如何获得其独特特征,我们将未成熟的小鼠皮质星形胶质细胞移植到雄性和雌性小鼠正在发育的皮质中,并评估它们的整合、成熟和存活率。几天之内,移植的星形胶质细胞就形成了形态,并获得了皮质星形胶质细胞典型的区域和平铺行为。移植后 35 – 47 天,星形胶质细胞在形态上看起来成熟,并且表达的 EAAT2/GLT1 水平与未移植的星形胶质细胞相似。移植的星形胶质细胞还支持其区域内的兴奋性/抑制性 (E/I) 突触前末端,并显示正常的 Ca 2 1 事件。移植的星形胶质细胞最初表现出端足水通道蛋白 4 (AQP4) 表达降低和 EAAT1/GLAST 表达升高,这两种蛋白的表达分别在移植后 110 天和一年时恢复正常。为了了解特定大脑区域如何支持星形胶质细胞的整合和成熟,我们将皮质星形胶质细胞移植到正在发育的小脑中。皮质星形胶质细胞与小脑分子层中的伯格曼胶质细胞 (BG) 交织以建立离散区域。然而,移植的星形胶质细胞保留了许多皮质星形胶质细胞特征,包括较高水平的 EAAT2/GLT1、较低水平的 EAAT1/GLAST 以及 AMPAR 亚基 GluA1 的表达缺失。总之,我们的研究结果表明,未成熟的皮质星形胶质细胞在移植后整合、成熟和存活(超过一年)并保留了皮质星形胶质细胞特性。星形胶质细胞移植可用于研究有助于星形胶质细胞发育/多样性的细胞自主(内在)和非细胞自主(环境)机制,以及确定在再生医学中移植星形胶质细胞进行细胞递送或替换的最佳时机。
在过去的二十年中,基于明星观察的态度确定系统在现代航天器中获得了普及。许多研究专门用于星形跟踪器硬件开发[1-10]以及使用星形跟踪器[11-16]。在过去的十年中,由于人们担心在增殖的低地球轨道(LEO)和地球同步地球轨道(GEO)拥挤环境以及对卫星的潜在事件中,因此,太空领域的意识(SDA)已成为越来越重要的能力[17-19]。类似于Star Tracker功能,SDA还利用光传感器来检测和跟踪空间中的对象,以相对于预定的目录[20-21]。因此,明星跟踪器非常适合SDA功能[22],因此,双重使用的星形跟踪器由美国政府为发展提供资金。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2024 年 11 月 12 日发布。;https://doi.org/10.1101/2024.11.11.622957 doi:bioRxiv 预印本